INVARIANT METRICS ON NEGATIVELY PINCHED COMPLETE
KAHLER MANIFOLDS

DAMIN WU AND SHING-TUNG YAU

ABSTRACT. We prove that a complete Kahler manifold with holomorphic curvature
bounded between two negative constants admits a unique complete Kéhler-Einstein
metric. We also show this metric and the Kobayashi-Royden metric are both uni-
formly equivalent to the background Kéahler metric. Furthermore, all three metrics
are shown to be uniformly equivalent to the Bergman metric, if the complete Kéahler
manifold is simply-connected, with the sectional curvature bounded between two
negative constants. In particular, we confirm two conjectures of R. E. Greene and
H. Wu posted in 1979.
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1. INTRODUCTION

The classical Liouville’s theorem tells us that the complex plane C has no bounded
nonconstant holomorphic functions, while, by contrast, the unit disk D has plenty
of bounded nonconstant holomorphic functions. From a geometric viewpoint, the
complex plane does not admit any metric of negative bounded-away-from-zero curva-
ture, while the unit disk admits a metric, the Poincaré metric, of constant negative
curvature.
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partially supported by the NSF grant DMS-1308244 and DMS-1607871. The first author would like
to thank Professor H. Wu for bringing his attention to the Bergman metric in 2006.
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In a higher dimensional analogue, the unit disk is replaced by the simply-connected
complete Kéahler manifold. It is believed that a simply-connected complete Kéahler
manifold M with sectional curvature bounded above by a negative constant has many
nonconstant bounded holomorphic functions (cf. [Yau82, p. 678, Problem 38]). In
fact, it is conjectured that such a manifold is biholomorphic to a bounded domain
in C" (cf. [SY77, p. 225], [Wu83, p. 98]; see also [Wu67, p. 195, (1)] for a related
problem with regard to the holomorphic sectional curvature).

The negatively curved complex manifolds are naturally associated with the invari-
ant metrics. An invariant metric is a metric Ly; defined on a complex manifold M
such that every biholomorphism F from M to itself gives an isometry F*Ly; = L.
Thus, the invariant metric depends only on the underlying complex structure of M.

There are four classical invariant metrics, the Bergman metric, the Carathéodory-
Reiffen metric, the Kobayashi-Royden metric, and the complete Kéhler-Einstein met-
ric of negative scalar curvature. It is known that on a bounded, smooth, strictly
pseudoconvex domain in C”, all four classical invariant metrics are uniformly equiv-
alent to each other (see, for example, [Die70, Gra75, CY80, Lem81, BFG83, Wu93]
and references therein). The equivalences do not extended to weakly pseudoconvex
domains (see, for example, [DFH84] and references therein for the inequivalence of
the Bergman metric and the Kobayashi-Royden metric).

On Kahler manifolds, R. E. Greene and H. Wu have posted two remarkable conjec-
tures concerning the uniform equivalences of the Kobayashi-Royden metric and the
Bergman metric. Their first conjecture states as below.

Conjecture 1 ([GW79, p. 112, Remark (2)]). Let (M,w) be a simply-connected
complete Kdahler manifold satisfying —B < sectional curvature < —A for two positive
constants A and B. Then, the Kobayashi-Royden metric R satisfies

C¢, < R(x,€) < Cl¢l,, forallz e M and € € T, M.

Here C > 0 is a constant depending only on A and B.

As pointed out in [GW79, p. 112], it is well-known that the left inequality in the
conjecture follows from the Schwarz lemma and the hypothesis of sectional curvature
bounded above by a negative constant (see also Lemma 19).

Our first result confirms this conjecture. In fact, we prove a stronger result, as we
relax the sectional curvature to the holomorphic sectional curvature, and remove the
assumption of simply-connectedness.

Theorem 2. Let (M,w) be a complete Kahler manifold whose holomorphic sectional
curvature H(w) satisfies —B < H(w) < —A for some positive constants A and B.
Then, the Kobayashi-Royden metric R satisfies

C Yl < R(z,€) < Cl¢lw, forallz € M and ¢ € TLM.

Here C > 0 is a constant depending only on A, B and dim M .
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Under the same condition as Theorem 2, we construct a unique complete Kéahler-
Einstein metrics of negative Ricci curvature, and show that it is uniformly equivalent
to the background Kéahler metric.

Theorem 3. Let (M,w) be a complete Kahler manifold whose holomorphic sectional
curvature H(w) satisfies —ko < H(w) < —k1 for constants k1,k2 > 0. Then M
admits a unique complete Kdhler-Finstein metric wkg with Ricci curvature equal to
—1, satisfying

Clo<wkg <Cw on M

for some constant C' > 0 depending only on dim M, k1 and k. Furthermore, the
curvature tensor Ry kg of wke and all its covariant derivatives are bounded; that is,

for each I € N,

sup ‘lem,KE(!T)‘wK
rxeM

where C; > 0 depends only on [, dim M, k1, and ks.

<

Theorem 3 differs from the previous work on complete noncompact Kéhler-Einstein
metrics such as [CY80, CY86, TY87, Wu08] in that we put no assumption on the sign
of Ricci curvature Ric(w) of metric w, nor on Ric(w) —w. The proof makes use
of a new complex Monge-Ampere type equation, which involves the Ké&hler class
of tw — Ric(w) rather than that of w. This equation is inspired by our recent
work [WY16a]. Theorem 3 can be viewed as a complete noncompact generaliza-
tion of [WY16a, Theorem 2] (for its generalizations on compact manifolds, see for
example [TY17, DT19, WY16b, YZ19].)

We now discuss the second conjecture of Greene-Wu concerning the Bergman met-
ric. Greene-Wu has obtained the following result, motivated by the work of the second

author and Y. T. Siu [SY77].

Theorem 4 ([GW79, p. 144, Theorem H (3)]). Let (M,w) be a simply-connected
complete Kdhler manifold such that —B < sectional curvature < —A for some positive
constants A and B. Then, M possesses a complete Bergman metric ws satisfying

wy > Cw on M,

for some constant C' > 0 depending only on dim M, A, and B. Moreover, the Bergman
kernel form B on M satisfies

Arw"™ <9B < Aw™ on M, (1.1)

for some positive constants Ay, Ao depending only on dim M, A, and B.

It is shown in [GW79, p. 144, Theorem H (2)] that, if a simply-connected complete
Kéhler manifold M satisfies —B/ r? < sectional curvature < —A/ r2 outside a compact
subset of M, then M possesses a complete Bergman metric, where r is the distance
from a fixed point. Greene-Wu proposed two conjectures concerning their Theorem H.
The first conjecture is that the lower bound —B/r? in the hypothesis of Theorem H (2)
can be removed. This has been settled by B. Y. Chen and J. H. Zhang [CZ02]. The
second conjecture is as below.
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Conjecture 5 ([GW79, p. 145, Remark (3)]). The Bergman metric wy obtained in
Theorem 4 satisfies
wp <Ciw on M

for some constant C1 > 0. As a consequence, the Bergman metric wss s uniformly
equivalent to the background Kdhler metric w.

Conjecture 5 now follows from the following result.

Theorem 6. Let (M,w) be a complete, simply-connected, Kdahler manifold such that
—B < sectional curvature < —A < 0 for some positive constants A and B. Then,
Bergman metric wy has bounded geometry, and satisfies

wy < Ciw on M,

where the constant C1 > 0 depending only on A, B, and dim M. As a consequence,
the Bergman metric wy s uniformly equivalent to the Kdahler metric w.

The simple connectedness assumption is necessary for the equivalence of wg and
w. For example, let M = P!\ {0,1,00}. Then, M has a complete Kihler-Einstein
metric with curvature equal to —1; however, M admits no Bergman metric. Another
example is the punctured disk D* = D\ {0} together with the complete Poincaré
metric wp = /—1dz A dz/(|z|log|z|?)?. Note that the Bergman metric on D* is
wy = /—1dz Adz/(1 — |2|?)?, which cannot dominate wp at the origin.

The equivalence of wy and w in Theorem 6 has been known in several cases: For
instance, when M is a bounded strictly pseudoconvex domain with smooth boundary,
this can be shown by using the asymptotic expansion of Monge-Ampere equation
(see [BFG83| for example). The second author with K. Liu and X. Sun [LSY04]
has proved the result for M being the Teichmiiller space and the moduli space of
Riemann surfaces, on which they in fact show that several classical and new metrics
are all uniformly equivalent (see also [Yeu05]); compare Corollary 7 below.

As a consequence of the above theorems, we obtain the following result on a com-
plete, simply-connected, Kéhler manifold with negatively pinched sectional curvature.

Corollary 7. Let (M,w) be a complete, simply-connected, Kdihler manifold satisfying
—B < sectional curvature < —A for two positive constants A and B. Then, the
Kahler-Finstein metric wgg, the Bergman metric ws, and the Kobayashi-Royden
metric R all exist, and are all uniformly equivalent to w on M, where the equivalence
constants depend only on A, B, and dim M .

Corollary 7 in particular implies that the smoothly bounded weakly pseudoconvex
domain Q constructed in [DFH84] and [JP13, p. 491], given by

Q= {<21,22,23) € C3;Rez1 + ‘2’1’2 + ’22‘12 + ’23‘12 + ’22‘4‘23|2 + ’22‘2’23‘6 < O},
cannot admit a complete Kahler metric with negative pinched sectional curvature.

In this paper we provide a unifying treatment for the invariant metrics, through
developing the techniques of effective quasi-bounded geometry. The quasi-bounded
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geometry was originally introduced to solve the Monge-Ampére equation on the com-
plete noncompact manifold with injectivity radius zero. By contrast to solving equa-
tions, the holomorphicity of quasi-coordinate map is essential for our applications to
invariant metrics. It is crucial to show the radius of quasi-bounded geometry depends
only on the curvature bounds. Then, a key ingredient is the pointwise interior esti-
mate. Several arguments, such as Lemma 12, Lemma 15, Lemma 20, and Corollary 24,
may have interests of their own.

Notation and Convention. We interchangeably denote a hermitian metric by
tensor g, = >, ; g;;dz' @ dz’ and its Kéhler form w = (v/—1/2) 3, ; g;5dz" Adz’. The
curvature tensor Ry, = { Rz} of w is given by

g 9 9 0 629-; " 9gic 09,7
= -~ ) = _ L2 pq iq ¥ Ipj
Rijha (62“ 0z1’ 0z 97! ) 0zk07! ; ozk ozt -

Let  be a point in M and n € T, M be a unit holomorphic tangent vector at 2. Then,
the holomorphic (sectional) curvature of w at x in the direction 7 is

H(w,z,n) = H(z,n) = Rm,7,m,0) = Y Rgun'wn*7.
1,7,k,1
We abbreviate H(w) < k (resp. H(w) > k) for some constant k, if H(w,z,n) <
(resp. H(w,x,n) > k) at every point z of M and for each n € T, M. We denote

dd®logw™ = dd“log det(g;;) = 788 log det(g;;) = —Ric(w)

where d° = /—1(0 — 9) /4.

We say that two pseudometrics L; and Lo are uniformly equivalent or quasi-
isometric on a complex manifold M, if there exists a constant C' > 0 such that

C™ Ly (2,6) < Lo(x,€) < CLy(x,€) forallze M, €€ TLM
which is often abbreviated as C~1L; < Ly < CLy on M.

In many estimates, we give quite explicit constants mainly to indicate their depen-
dence on the parameters such as dim M and the curvature bounds.

2. EFFECTIVE QUASI-BOUNDED GEOMETRY

The notions of bounded geometry and quasi-bounded geometry are introduced by
the second author and S. Y. Cheng, originally to adapt the Schauder type estimates
to solve the Monge-Ampere type equation on complete noncompact manifolds (see,
for example, [Yau78b], [CY80, CY86], [TY87, TY90, TY91] and [WLI7, Appendix]).

We use the following the formulation (compare [TY90, p. 580] for example). Let
(M,w) be an n-dimensional complete Ké&hler manifold. For a point P € M, let
B, (P;p) be the open geodesic ball centered at P in M of radius p; sometimes we
omit the subscript w when there is no confusion. Denote by Bcn(0;7) the open ball
centered at the origin in C™ of radius r with respect to the standard metric wen.



6 DAMIN WU AND SHING-TUNG YAU

Definition 8. An n-dimensional Kéhler manifold (M, w) is said to have quasi-bounded
geometry, if there exist two constants r9 > 1 > 0, such that for each point P of M,
there is a domain U in C™ and a nonsingular holomorphic map ¢ : U — M satisfying
the following properties

(i) Ben(0;71) C U C Ben(0;73) and ¢(0) = P;
(ii) there exists a constant C' > 0 depending only on r1,79,n such that

C lwen < ¢*w < Cwen on U (2.1)
(iii) for each integer I > 0, there exists a constant A; depending only on I, n,ry,ro
such that
olvI+lul 95

where g;5 is the component of ¢*w on U in terms of the natural coordinates
(v',...,v"), and u,v are the multiple indices with |p| = p1 + -+ + fin.

The map ¢ is called a quasi-coordinate map and the pair (U, 1) is called a quasi-
coordinate chart of M. We call the positive number r; a radius of quasi-bounded
geometry. The Kéahler manifold (M,w) is of bounded geometry if in addition each
1 : U — M is biholomorphic onto its image. In this case, the number r; is called
radius of bounded geometry.

The following theorem is fundamental on constructing the quasi-coordinate charts.
Theorem 9. Let (M,w) be a complete Kahler manifold.

(1) The manifold (M,w) has quasi-bounded geometry if and only if for each integer
q > 0, there exists a constant Cy > 0 such that
sup |VIRy,| < Cy, (2.3)
PeM
where Ry = {Rj7} denotes the curvature tensor of w. In this case, the radius
of quasi-bounded geometry depends only on Cy and dim M.

(2) If (M,w) has positive injectivity radius and the curvature tensor Ry, of w
satisfies (2.3), then (M,w) has bounded geometry. The radius of bounded
geometry depends only on Cy, dim M, and also the injectivity radius r,, of w
unless 7, s infinity.

Theorem 9 (1) is especially useful for a complete Kahler manifold with injectivity
radius zero. Compare, for example, [TY87, pp. 602-605], [Wu08], [GW16] for the
explicit construction of quasi-bounded geometry on the quasi-projective manifolds;
compare also [Shi97, p. 212, Lemma 9.2] for the construction using the Ricci flow,
under the additional assumption of positive bisectional curvature.

The Riemannian version of quasi-bounded geometry is constructed by the second
author in 1980 (cf. [WL97, Appendix]), by taking the exponential map expp as
the smooth quasi-coordinate map, with its domain U being the ball B(0; R) in the
tangent space at P. The radius R can be chosen to depend only on the upper bound
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of the curvature. The real quasi-bounded geometry is sufficient to adapt the Schauder
estimates to solve equations on a Riemann manifold, regardless of its injectivity radius.

One can solve the holomorphic functions {v/} out of the normal coordinates on
B(0; R), by using the L?-estimate of d-operator. By Siu-Yau’s inequality, one applies
the singular L2-weight to ensure that {dv’} are independent at P. Then, the holo-
morphic functions {v/} form a coordinate system in a smaller ball B(0;r), by the
inverse function theorem. This result is classic; see [SY77, pp. 247-248], [GWT79, pp.
160-161], and [TY90, p. 582].

A subtlety is that the radius r could depend on P a priori. Indeed, the complex
structure on B(0; R) is pulled back from the complex manifold by expp. Consequently,
for different P, the corresponding B(0; R) is in general different as a complex manifold.
Thus, the J-operator is different on different balls; so is the radius r obtained from
the L? estimate of  and the inverse function theorem.

We remark that the subtlety is not addressed in the classical works, as they do not
need to. Either the Riemannian version of quasi-bounded geometry, or the explicit
construction on quasi-projective manifolds, is sufficient for applications in [TY90].

The subtlety is settled in Lemma 12, an indispensable ingredient in the proof of
Theorem 9, which is, in turn, crucial for proving the Greene-Wu conjectures. We first
reformulate the classical result into the form of the following Lemma 10, from which
we can proceed further. In the proof of Lemma 12, we transform the J-equation
into the Laplace equation for functions (in contrast to those [FK72, (1.1.1)] for (0, 1)-
forms); this allows us to apply maximum principles. In this approach, the constants
of estimates depend only on the curvature bounds; so does the radius.

Lemma 10. Let (N™,g) be an n-dimensional Kdhler manifold, and let B(P;dy) be
an open geodesic ball of radius dy centered at a point P in N. Suppose that B(P;do)
s contained in a coordinate chart in N with smooth, real-valued, coordinate functions
{zb, ... 2™, 2"t 2}, Assume that the following conditions hold, where each Aj
denotes a positive constant.

(i) No cut point of P is contained in B(P;dp).
(ii) The sectional curvature K(g) of g satisfies —As < K(g) < Ay on B(P;dp).
(iii) For each j =1,...,n,
10(x7 +/=12")[4(Q) < ¢(r), for all Q € B(P;d).
Here r = r(Q) denotes the geodesic distance d(P,Q), and ¢ > 0 is a continuous
function on [0,+00) satisfying

1/2 ¢2(t)
/0 3 dt < +o0. (2.4)
Then, there exists a system of holomorphic coordinates {v',...,v"} defined on a
smaller geodesic ball B(P;61) such that
v =) /12" dv? =d(2? + /12", at P (2.5)

forallj=1,...,n.
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Proof. Let h be a real-valued smooth function on [0, +00) and let wy be the Kéhler
form of g. By conditions (i) and (ii), we apply the Hessian Comparison Theorem (see,
for example, [SY77, p. 231] and [SY94, p. 4, Theorem 1.1]) to h(r) to obtain

4dd°h(r) > min {2h'(7‘)\/A>100t(\/A>17“), h'(r)\/lecot(\/A»lr) + h"(r)} Wy,

for all z € B(P;dy), where r = r(x) = d(x, P). Letting h(r) be r? and log(1 + 7?),
respectively, yields

dd°r?* > —w,, (2.6)

47

dd®log(1 +r?) > 7%

for all z € B(P;0), where ¢ is a constant satisfying

1
1

Inequality (2.6) in particular implies that B(P;d) is a Stein manifold. On the other
hand, by (ii), the Ricci curvature Ric(wy) of g satisfies

) 34
‘Rlc(wg”g < \/E‘Rm|g < §n3/2(A1 + Agz).

Pick a constant { > 0 such that

T A+ A 1,
and let
p1=1log(L+71?), 2= (2n+2)logr, ¢ =1+ po.
Then,

dd°p1 + Ric(wg) > wy on B(P;6).

Let 0 < x <1 be a smooth function on R such that y = 1 on the closed interval
[0,6/6] and x =0 on [§/3,+00). Let
w =g + /12", j=1,...,n

It follows from [SY77, Proposition 2.1, p. 244-245] (see also [MSY81, Lemma 4 and
Remark, p. 208] for Stein Kédhler manifolds) that there is a smooth function 8’ on
B(P;4) such that

p7 = d[(x or)w’] on B(P;6) (2.8)

and satisfies

/ |87 2e~%adV, < / 10((x o r)wj)|§e_‘9dVg, j=1...,n. (2.9)
B(P;6) B(P;6)



INVARIANT METRICS 9

By condition (iii),

/ B((x o r)wd) e dV, = / B e,
B(P;6/6) B(P;6/6)

5/6
< C(n,Al,Az)/O (bj(;)dr (2.10)

S C(n7A17A2> < +-00,

where we use the standard volume comparison dVy; < C(n, A, A2)r*~tdrdVgen1 for
r < <1/4, and C(n, Ay, A2) > 0 denotes a generic constant depending only on n,
A1, Ay. This together with (2.9) imply

Bl =0, dB/=0 atP.
Let
v = (xor)w — B, j=1,...,n. (2.11)
Then v/ is holomorphic and satisfies (2.5) for each j. By the inverse function theorem,

the set of functions {v!,... 9"} forms a holomorphic coordinate system in a smaller
ball B(P;d1) where 0 < & < ¢ min{ 6o, 1/4,7/(4v/A7)}. O

Remark 11. Condition (2.5) in particular includes two cases, ¢(t) = t'7¢ with
constant a > 0, and ¢(t) = t*(—logt)~! with k,1 > 1. The former is sufficient for our
current application. For clarity, we specify ¢(t) = t'*% in the lemma below.

Lemma 12. Let (N", g) and B(P;dy) be given as in Lemma 10, satisfying conditions
(i), (ii), and (iii) with ¢(r) = Asri™e for some constant o > 0. Assume, in addition,

that the metric component {g;;} of g with respect to {x',...,x*"} satisfies
AN (635) < (96)(Q) < Aa(655), 1<i,j<2n, (2.12)
09ij .
2 (Q)’ < As, 1<i,j,k<2n, (2.13)

for all Q € B(P;6&y). Then, there is a holomorphic coordinate system {v',... v"}
defined on a smaller geodesic ball B(P;61), for which

(a) the radius 81 depends only on dp, n, A;, 1 < j <5, and also o if 0 < 1;
(b) the coordinate function v’ satisfies (2.5) and

, 1 e
v/ —wl| < §r1+71, (2.14)

o' 1 o o' 1 o1

gw 0S| ST (2.15)

on B(P;61) for all 1 <i,j <n, where w! = 27 + /12", r = r(Q) = d(P,Q),
and o1 = min{o, 1}.

Proof. Tt remains to show (a) and (2.14). We start from (2.8) to obtain
9*0p7 = 0*0](x or)w’] on B(P;9).
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where § > 0 is a constant satisfying (2.7) and w/ = 27 + \/—1z"*/. Since (N, g) is
Kahler, the Laplace-Beltrami operator A, is equal to the O-Laplacian O = 0*0 + 00*
up to a constant factor (—2) (i.e., Ay = —QD) It follows that

AyB = Ayuw! = f on B(P;5/6). (2.16)

One can write

By = f@x“( ab\f@x*’)

on B(0;d) using the given single coordinate system {z!,... 2?"} where the summa-
tion notation is used and 1 < a,b < 2n. It follows that A, is of the divergence form,
and is uniformly elliptic by (2.12).

Applying the standard interior estimate [GTO01, p. 210, Theorem 8.32] to equation
(2.16) yields

|dB70; 5 )SC(n,A)[5_1|5j lo:B(P3/12) +01f |0;B<P;5/12>]'

Here | - o,y = |- |co) for a domain U, and we denote by C'(n, A) a generic constant
depending only on n and A4;, 1 < 5 <5.

To estimate the C%-norm, we use the local maximum principle ([GT01, Theorem
8.17, p. 194] with v = 0) to get

18 0.5(P:6/12) < C(TL,A)[ B L2Bpsse)) + 671 flosp: 5/6)} (2.17)
Combining these two estimates yields
‘d5j|o;B(P;5/24) < C(n,A) [5_n_1\ﬁj\L2(B(P;6/6)) + 5‘f|0;B(P;6/6)}-

To estimate the L?-norm, we apply (2.9) and (2.10) to obtain
|57 |L2 B(P:5/6)) —/ |87e % e?dV,
B(P;3/6)
n A N2
<42 +2/ ’8(()( or)w9)|ge “dv,
B(P;5/6

5/6
< C(n,Al,AQ,A3)52n+2/ r2o=lqr
0

< C(n, A1, Asg, A3)0_152”+2+2”.
On the other hand, it follows from (2.12) and (2.13) that
| flo;ppisse) < C(n, As, As).
Hence,
(n, A)[o=167 + 0]
(n,A)o;10°, oy = min{l,0}, (2.18)

1B |o;(pisj24) < C
C

IA

for all 1 < j < n. It follows that
18(Q)| < C(n, Aoy 'r'™r for any Q € B(P;6/24),
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where r = d(P, Q).
As in (2.11) we let
v'=w'— " on B(P;J).
Then, for any @ € B(P;6/24),
|dvt A+ Adv"g(Q) > |dw! A+ A dw™|y(Q) — C(n, A)oy 67!
> A2~ C(n, Aoy 6™,
where we use (2.18) and (2.12). Moreover,
|/ —wl| = |7 < C(n, Aoy ritor,

Fix now a constant ¢ satisfying (2.7) and

Denote 6; = 6/24. It follows that dv', ..., dv" form an independent set at every point
in B(P;d1); hence, {v',...,v"} forms a coordinate system on B(P;d;) satisfying
(2.14). Estimates (2.15) follows from |d3%(0/0w®)| < |dB*||0/0w*|, (2.12), and (2.18).

O

Proof of Theorem 9. If (M,w) has quasi-bounded geometry, then by definition
the coordinate map 1 is a local biholomorphism. It then follows from (2.2) that the
curvature R,, of w and all its covariant derivatives are all bounded.

Conversely, if |Ry,| < Cp then in particular the sectional curvature K(w) < Cy. It
follows from the standard Rauch Comparison Theorem (see, for example, [dC92, p.
218, Proposition 2.4]) that for each P € M, B, (P; R) contains no conjugate points
of P for R < w/y/Cy. Fix R = 7/(2/Cp). Then, the exponential map

expp : B(O;R) C T pM — M (2.19)

is nonsingular, and hence, a local diffeomorphism. The exponential map then pulls
back a Kahler structure on B(0; R) with Kéhler metric exp)w so that expp is a
locally biholomorphic isometry. In particular, every geodesic in B(0; R) through the
origin is a straight line. Hence, B(0; R) contains no cut point of the origin.

Pick an orthonormal basis {e1, ..., ea,} of Tk pM with respect to g = exp} w, such
that the associated smooth coordinate functions {z',...,2%"} on Tr pM satisfies
Az! +v/=12") =0 atz=0,
for each j = 1,...,n. The complex-valued function w’ = 2/ + v/—1 2" need not be

holomorphic. Nevertheless, we have the crucial Siu-Yau’s inequality: If the sectional
curvature K (g) of g satisfies —As < K(g) < A; with constant A;, Ay > 0, then

|0w|, < nd/2 Ar2eM2r/6 o B(0; R), (2.20)

where

r=d(0,z) = |z| = \/(;pl)Q T+ @™)2, zeB(0;R),
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and A > 0 is a constant depending only on A; and As. In fact, inequality (2.20) follows
the same procedure of estimating the dual vector field as in [SY77, pp. 246-247] (its
local version is also observed by [GW79, p. 159, (8.22)]), with two modifications given
below, due to the different upper bounds for the sectional curvature. The inequality
in [SY77, p. 246, line 11, i.e., p. 235, Proposition (1.5)] is replaced by

0 2
’va/arva/ar (r@) ’g <n2Aret2 /6 1 <1< 2, (2.21)

and the inequality | X|? > %Z?Zl(]/\j\Q + |uj|?) in [SY77, p. 247] is replaced by

P2 L {1, AL S, 222
7j=1

1
2
under the curvature condition —Ay; < K(g

nt

< Aj; both (2.21) and (2.22) follow readily
from the standard comparison argument ((2.2

) is indeed half of (2.23) below).

g = exphw with respect to {z7}. If the
< Aj, then again by the standard Rauch

(

Let {g;j} be the components of metri
sectional curvature satisfies —Ay < K(g
comparison theorem we obtain

)
(
)

AT 0y) < gij(2) < A(y), 1<i,j <2n, (2.23)
0gij 4 Az 4 .

< — < < .
‘&rk(x)‘inflrexp(gr), 1<i,5,k <2n, (2.24)

for each x € B(0; R), where r(z) = d(0,z) and A > 0 is a constant depending only
on A1 and AQ.

Thus, we can apply Lemma 12 with B(P;dy) = B(0; R) and ¢(r) = C(n,Co)r?
to obtain a smaller ball B(0;d1), on which there is a holomorphic coordinate system
{v!,...,v"} such that v7(0) = 0, dv’ (0) = de(O), \vj(x) — wJ(CC)| <61/(2y/n), and

8’Ui 51
- — 0 < = 2.2
owJ () = 05| < 2’ 6w9 - 2 (2.25)
for all z € B(0;61), 1 < 4,5 < n. Here the radius 1/24 > §; > 0 depends only on
n and Cp. Since v = (v',...,v") is biholomorphic from B(0;d;) onto its image U in

C", the image U satisfies
Ben (0, (51/2) cUcC Bcn(0,351/2)

It is now standard to verify that the composition exppov™! is the desired quasi-
coordinate map for P on U. Denote by {gij} the components of exp}p w with respect
to coordinates {v7}, by slightly abuse of notation. By (2.23) and (2.25), we obtain

C™(6i5) < (gi7) < C(645),

where C' > 0 is a generic constant depending only on Cy and n. This proves (2.1).
The estimate of first order term |9g,;/ Ov¥| follows from (2.24) and (2.25). The higher
order estimate (2.2) follows from applying the standard Schauder estimate to the Ricci
and scalar curvature equations [TY90, p. 582] (see also [DK81, p. 259, Theorem 6.1]).
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For the second statement, fix a positive number 0 < R < r,,, where r,, denotes the
injectivity radius of (M,w). Then, for every P € M, the exponential map given by
(2.19), i.e., expp : B(0; R) C Tr,pM — M, is a diffeomorphism onto its image. From
here the same process implies (M, w) has bounded geometry. O

We remark that the proof of Theorem 9 yields the following result: A complete
Kahler manifold (M,w) of bounded curvature has quasi-bounded geometry of order
zero, i.e., (M,w) satisfies Definition 8 except (iii); furthermore, the radius of quasi-
bounded geometry depends only on dim M and the curvature bounds. If in addition w
has positive injectivity radius, then (M,w) has bounded geometry of order zero, and
the radius of bounded geometry depends only on the curvature bounds, dim M, and
the injectivity radius of w. This result is sufficient for the sake of proving Conjectures
1 and 5. Our proof of Theorem 3 requires the full strength of Theorem 9, and hence,
Lemma 13 in the next section.

3. WAN-XIONG SHI'S LEMMAS

The following lemma is useful to construct the quasi-bounded geometry.

Lemma 13. Let (M,w) be an n-dimensional complete noncompact Kdihler manifold
such that

— ke < H(w) < —k1 <0 (3.1)
for two constants k1, ke > 0. Then, there exists another Kdhler metric & such that
satisfying

C'w< < Cw, )
— Ko SH((D) < —K1 <0,

sup |@qRaB'yc‘r| < CQa (34)
zeM

where VIR, denotes the qth covariant derwative of the curvature tensor Ry, of @
with respect to @, and the positive constants C = C(n), kj = R;j(n,k1,kK2), j = 1,2,
Cq = Cy(n, q, k1, K2) depend only on the parameters in their parentheses.

Lemma 13 (3.2) and (3.4) are contained in W. X. Shi [Shi97]. We provide below
the details for the pinching estimate (3.3) of the holomorphic sectional curvature. Of
course, if the manifold were compact, then (3.3) would follow trivially from the usual
uniform continuity of a continuous function. However, this does not hold for a general
bounded smooth function on a complete noncompact manifold. Here the maximum
principle (Lemma 15 in Appendix A) has to be used.

In this section and Appendix A, we adopt the following convention: We denote by
w= (V=1/2)g,5d2" AdzP the Kéhler form of a hermitian metric g,,. The real part of
the hermitian metric g, = g,5dz" ®dz? induces a Riemannian metric g = 9ij dz' @dx’
on Tr M which is compatible with the complex structure J. Extend g linearly over C
to TkRM ®@r C = T"M @ T'"M, and then restricting it to 7'M recovers (1/2)g,; that
is,

g(v,w) = Re(gw(naé))v gw(naé) = 29(”)5)'
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Here v, w are real tangent vectors, and 7, £ are their corresponding holomorphic tan-
gent vectors under the R-linear isomorphism TR M — T'M, i.e., n = %(v —vV—=1Jv),
¢ = 3(w — v/=1Jw). Then, the curvature tensor Ry, satisfies

= 1
R(n7ﬁ7€7§) = iR(U, J'U, J"LU,U))

It follows that
1
H(w,n) = R(n,7,1,7) = 5 R(v, Jv, Jo,v).
Unless otherwise indicated, the Greek letters such as a, 8 are used denote the holo-

morphic vectors 9/0z%,0/0z° and range over {1,.. . n}, while the latin indices such
as 1, J, k are used to denote real vectors 9/0z',0/0x’ and range over {1,...,2n}.

Proof of Lemma 13. The assumption (3.1) on H implies the the curvature tensor Ry,
is bounded; more precisely,

34
sup |Ry ()| < §7’L2(/€2 — K1).
zeM

Here and in many places of the proof, the constant in an estimate is given in certain
explicit form, mainly to indicate its dependence on the parameters such as x; and n.
Applying [Shi97, p. 99, Corollary 2.2] yields that the equation

agij (.CE, t) = —2Rij (l’, t)

9ij(0,t) = gij(z)

admits a smooth solution {g;;(z,t)} > 0for 0 <t < y(n)/(ke—r1), where Oy(n) > 0is
a constant depending only on n. Furthermore, the curvature Ry, (z,t) = {Rjui(z,t)}
of {gij(x,t)} satisfies that, for each nonnegative integer g,

C — k)2 0
sup |VIRy(z,1))? < (g, n)(r2 = 1) , forall0<t< o(n) =T, (3.5)
zeM 11 K2 — K1

where C'(¢,n) > 0 is a constant depending only ¢ and n. In particular, the metric
gij(x,t) satisfies Assumption A in [Shi97, p. 120]. Then, by [Shi97, p. 129, Theorem
5.1], the metric g;;(x,t) is Kéhler, and satisfies

0
aga/g(:c, t) = —4R, 5(x,1)

9032, 0) = g,5(2),
for all 0 <t <T. It follows that
eftC(n)(ﬁgfnl)gaB(x) < gag(fb“,t) < etC’(n)(liz*/ﬂ)gaB(x)7 (36)

for all 0 <t < T = 6y(n)/(k2 — k1). Here and below, we denote by C(n) and Cj(n)
generic positive constants depending only on n. Then, for an arbitrary 0 < ¢t < T,
the metric w(z,t) = (le/Q)gaB(x,t)dzaAdzﬁ satisfies (3.2) and (3.4); in particular,
the constant C' in (3.2) depends only on n, since tC(n)(k2 — k1) < Op(n)C(n).
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We next to show that there exists a small 0 < ty < T so that w(x,t) also satisfies
(3.3) whenever 0 < t < ty. Recall that the curvature tensor satisfies the evolution
equation (see, for example, [Shi97, p. 143, (122)])

0

aR

= 4AR, 5,5 + 49" 9" (R

— 2g'ul7<Ral7R

R’y&pﬂ + Ra&;ﬁ'R'prD - Raﬂ’ﬁRy,@pﬁ)
+ RH‘&ROCBPﬂ) bl

aBye aBuT

ubpr T BugBavpr + RypRop,s

where A = A,y = 39°7(2,8)(V3Va + VaVj). It follows that

<§5Raﬂfya)77a77’8777770

< A( AR 0 )1+ C1(0) (2 = ) (3.7)
by (3.5) with ¢ = 0. Let
Raﬁyﬁnaﬁﬁnvﬁa

H(.’L’,?],t) = |77|4
w(x,t)

Then, by (3.1) and (3.5),
H(xz,n,0) < —k1,
|H (2,1, )] < [Rm(2, )| < Co(n)(k2 — K1)
To apply the maximum principle (Lemma 15 in Appendix A), we denote
h(x, t) = max{H (z,7,1); [N|u@s) = 1},

for all x € M and 0 < t < 6y(n)/(ke2 — k1). Then, h with (3.7) satisfy the three
conditions in Lemma 15. It follows that

h(z,t) < Co(n)(ka — K1)’ — k1.
where Cy(n) = C1(n) + 8,/nCo(n)? > 0. Let

K1 90(7&)
202(7”&)(/-{2 — /€1)27 K92 — K;l} > 0.

tg = min{
Then, for all 0 < ¢t < 1,
H(z,n,t) < h(z,t) < —% <0.
Since the curvature tensor is bounded (by (3.5) with ¢ = 0), we have
H(z,n,t) > —Co(n)(ky — K1).

Thus, for an arbitrary ¢ € (0,%o], the metric w(z,t) = (vV—1/2)g,5(z,t)dz% A dz’ is a
desired metric satisfying (3.3), and also (3.2) and (3.4). O
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Lemma 14. Let (M"™,w) be a complete noncompact Kahler manifold whose Riemann-
tan sectional curvature is pinched between two negative constants, i.e.,

—ke < K(w) < —k1 <0.

Then, there exists another Kdhler metric w satisfying

where ﬁqéaﬁw denotes the qth covariant derivatives of {Raﬁw} with respect to w,

and the positive constants C = C(n), kj = Kj(n,k1,K2), j = 1,2, Cqg = Cy(n, q, K1, K2)
depend only on the parameters inside their parentheses.

The proof of Lemma 14 is entirely similar to that of Lemma 13, with the following
modification: The function ¢ is now given by
o(x,v,w,t) = Rijkl(x,t)viijkvl,

for any v € M and v,w € Tr M, and

h(JL‘, t) = max{@(l“vﬂ,&t); |77 A é‘g(x,t) = 1}
= max{@(fvn,ﬁ,t); |77|g(m,t) = |€|g(x,t) =1, <777§>g(3:,t) = 0}

Here |7 A €% = |n|2€)? — (n,€)2. The result then follows from Lemma 16.

A. MAXIMUM PRINCIPLES

The proof of Lemma 13 uses the following maximum principle, which extends
[Shi97, p. 124, Lemma 4.7] to tensors; compare [Shi97, pp. 145-147], [Ham82, Theo-
rem 9.1], and [CCCY03, pp. 139-140], for example.

Let (M,®) be an n-dimensional complete noncompact Kéahler manifold. Suppose
for some constant 7' > 0 there is a smooth solution w(z,t) > 0 for the evolution
equation

0
aga,é(xﬂt) = _4Ra6(‘r7t)7 on M x [OaTL (Al)
ga6<x70) :gaﬁ(‘r)? r €M,
where g,5(z,t) and g,z are the metric components of w(z,t) and @, respectively.

Assume that the curvature R (7,t) = {R,3,5(7,t)} of w(x, 1) satisfies

sup |Rm(ac,t)|2 < ko (A.2)
Mx[0,T]

for some constant kg > 0.
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Lemma 15. With the above assumption, suppose a smooth tensor {W,z. - (x,t)} on
M with complex conjugation WQBW-,(:U,t) = Waaey(x,t) satisfies

0 o= —o o= —o
=W )10 < (AW, 5,507 077 + Cuinld (40, (A.3)
i )

forallx e M, neTiM,0<t<T, where A = 2ga5(x,t)(V5Va +VaVp) and Cy is
a constant. Let

h(l’, t) = max {Waﬁyénaﬁﬁnwﬁa; ne T;M, |77|w(ac,t) = 1}7

forallz € M and 0 <t <T. Suppose

sup  |h(z,t)| < Cy, (A.4)
c€M,0<t<T
sup h(z,0) < —k, (A.5)
zeM

for some constants Cy > 0 and k. Then,

h(z,t) < (8Co\/nko + C1)t — k.
forallz e M,0<t<T.

Proof. We prove by contradiction. Denote

C =8Cy/nky + C1 > 0. (Aﬁ)
Suppose
h($1,t1)—0t1—|—/€>0 (A7)

for some (z1,t1) € M x [0,T]. Then, by (A.5) we have t; > 0.

Under the above conditions (A.1) and (A.2), by [Shi97, p. 124, Lemma 4.6], there
exists a function 0(z,t) € C*°(M x [0,T]) satisfying that

0<0(x,t) <1, on M x [0,T], (A.8)
o0 _
& — Aw(z’t)e + 20 1|V9|i(m’t) S *0, on M x [O,T], (Ag)
Cyt Cs
—e < flzt) < —F—— M x [0,T]. A.10
1+ do(wo, ) — (= )_1+d0(960,96)’ on M (0. 7] ( )

where 1z is a fixed point in M, dy(z,y) is the geodesic distance between z and y with
respect to w(z,0), and Cy > 0 is a constant depends only on n, ko, and T

Let

mo = sup ([h(a:, t) — Ct + k]6(z, t))
x€M,0<t<T

Then, 0 < mo < Cp + ||, by (A.7) and (A.8). Denote

_ 205(Co+ CT + |k])
= e

A > 0.
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Then, for any x € M with dy(x,z9) > A,

CQ(CO+CT+"€|) mo

((e,t) = Ct+m)oe, )] < = 0rs mo

IN

5

It follows that the function (h — Ct 4 k)f must attain its supremum mg on the
compact set B(zg; A) x [0,T], where B(zg;r) denotes the closure of the geodesic ball
with respect to w(z,0) centered at z( of radius r. Let

Wa,é'y&naﬁﬂnvﬁo

i — Ct+ k&,
|77|w(;,;7t)

f(x’n’t) =

for all (x,t) € M x [0, T],n € T, M \ {0}. Then, there exists a point (2,7, t,) with
T € B(wo; A), 0 <t < T, e € T, M and |nx|y (g, +,) = 1, such that

= s Ty T 0 wy bx) = 0 ,
mo = f (@, N, )0, 1) sﬁlﬁf,{n(f )
and t, > 0 by (A.5), where S; = {(x,n) € T'"M;x € M,n € T, M, ||,y = 1}

We now employ a standard process to extend 7, to a smooth vector field, denoted
by n with slightly abuse of notation, in a neighborhood of (x,,t.) in M x [0,T] such
that 7 is nowhere vanishing on the neighborhood, and

an:O, Vn=0, An=0, at (z«t). (A.11)

This extension can be done, for example, by parallel transporting 7, from z, to each
point y in a small geodesic ball centered at x., with respect to metric w(-,t,), along
the unique minimal geodesic joining x, to y; this extension is made independent of ¢
and so dn/0t = 0 in the geodesic ball.

Since f(z,n(x),t) is smooth in a neighborhood of (z,t.), we can differentiate f
and evaluate the derivatives at the point (z,,t.) to obtain

il = (5o 00 +8(Wo P07 ) (Bog) = €
= (%Waéw-;)n"‘ﬁ 7% + 8Co\/nke — C (by (A.4) and (A.2))

< Af+Cy+8Co\/nko —C (by (A.3) and (A.11))
< Af, by (A.6).

Since f0 = f(x,n(x),t)0(x,t) attains its maximum at (x4, t.), we have

%(f@)zo, V(f0) =0, A(f0) <0, at (z.,t.). (A.12)
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It follows that, at the point (xy,t),
0 0 0

< Z(f0) = 0= =

0= g0 =057+ 5°
0
< A —

<SOAf+ o0

= A(f0) —207'V0 - V(f0) + f[gf — NG+ 29—1\v0\2]
< —f6 (by (A.12) and (A.9))
= —mg < 0.

This yields a contradiction. The proof is therefore completed. ]

In the proof of Lemma 13, we apply Lemma 15 with W,3.; = R,3.; to estimate
the holomorphic sectional curvature. For the Riemannian sectional curvature, we
apply the similar result given below with Wi = Rjjp.

Lemma 16. Assume (A.1) and (A.2). Suppose a smooth real tensor {Wi;n(x,t)} on
M satisfies

(%Wijkl)viwj whol < (AWygia)v'w/whol + Crlv, o lwl2 ),

forallz € M, v,w € Tr z M, where A = g"(x,t)V;V; and C; > 0 is a constant. Let
k(z,t) = max {Wijklviijkvl;v,w € Tr oM, [v AN wlg(zp) = 1},

forallz € M and 0 <t <T. Suppose

sup  |k(z,t)| < Co,
TEM,0<t<T

sup k(z,0) < =k,
zeM

for some constants Cy > 0 and k. Then,

k(z,t) < (8Coy/nko + C1)t — k.
forallz e M,0<t<T. OJ

4. KOBAYASHI-ROYDEN METRIC AND HOLOMORPHIC CURVATURE

The Kobayashi-Royden pseudometric, denoted by K, is the infinitesimal form of the
Kobayashi pseudodistance. Let us first recall the definition (see, for example, [Roy71]
or [Kob98, Section 3.5]).

Let M be a complex manifold and 7'M be its holomorphic tangent bundle. Define
R T'M — [0, +00) as below: For any (z,§) € T'M,

o1
Ry (,§) = inf =,
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where R ranges over all positive numbers for which there is a ¢ € Hol(Dg, M) with
?(0) = x and ¢.(0/0z|,=0) = dp(0/0z|,=0) = £. Here Hol(X,Y") denotes the set of
holomorphic maps from X to Y, and

Dr={z€C;l|z| < R}, and D=D;.
Equivalently, one can verify that (cf. [GWT79, p. 82]), for each (z,&) € T'M,
f(x, &) = inf{|V|p; V € T'D, there is f € Hol(D, M) with f.(V) = £}
= inf{|V]|c;V € T}D, there is f € Hol(D, M) such that
f0) =z, f(V) =&}

Here | - |p and | - |¢ are, respectively, the norms with respect to the Poincaré metric
wp = (vV/=1/2)(1 — |2|?)~2dz A dz and Euclidean metric wc = (v/—1/2)dz A dz.

The following decreasing property of Ky follows immediately from definition.

(4.1)

Proposition 17 ([Roy71, Proposition 1]). Let M and N be complex manifolds and
U : M — N be a holomorphic map. Then,

(V" RN)(2,€) = K (¥ (), U.(E)) < Rum(2,€)

for all (x,&) € T'"M. In particular, if ¥V : M — N is biholomorphism then the equality
holds; if M is a complex submanifold of N then

Example 18. Let M be the open ball B(r) = {z € C";|z| < r}. Then,

€2, a2 1V
Rp(r)(a,§) = , (4.2)
B(r) r2— a2 " (12 = |a]?)?
for all a € B} and & € T/ B'; see [JP13, p. 131, Example 3.5.6] for example. O

The result below is well-known. We include a proof here for completeness.

Lemma 19. Let (M,w) be a hermitian manifold such that the holomorphic sectional
curvature H(w) < —k < 0. Then,

Rz, 8) > \/gf‘w for each x € M, £ € T. M.

Proof. Let ¢ € Hol(D, M) such that ¢(0) = = and ¢(v) = £ It follows from the
second author’s Schwarz Lemma [Yau78a, p. 201, Theorem 2’| that

2
Y'w < —wp onD,
K
where wp = (vV—1/2)(1 — |2?)72dz A dz. Tt follows that
. 2 2
€5 = w(w; &) = (W"w)(0;0) < ~wp(0;0) = —[vfE.
Hence, |v|c > /K/2|€|w. By (4.1), we obtain Kys(z,&) > +/k/2[€]w- O

The quasi-bounded geometry is essential in the following estimate.
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Lemma 20. Suppose a complete Kihler manifold (M,w) has quasi-bounded geometry.
Then, the Kobayashi-Royden pseudometric R satisfies
Ay (z,€) < ClEly, forallze M, &€ TM,
where C' depends only on the radius of quasi-bounded geometry of (M,w).

Proof. Let (1, B(r)) be the quasi-coordinate chart of (M,w) centered at x; that is,
B(r) ={z € C%|z| < r} and ¥ : B(r) — M is nonsingular holomorphic map such
that ¢(0) = z. Denote U = ¢(B(r)). Then, by Proposition 17,

Ry (w,€) < Ru(, &) = Ru(¥(0),v«(v)) < Rpry(0,v),
where v € T} (B(r)) such that ¢.(v) = . It follows from (4.2) that

|[vcn
)= ——.

Ry (x,§) < Rpy(0,v .

By virtue of the quasi-bounded geometry of (M,w), more precisely, (2.1), we have
CHoln < (¥ w)(0;0) = w(@;€) = €[5 < Clufen,

where C > 0 is a constant depending only on 7. Hence,

far(0.9) < Y.

This completes the proof. ]

Proof of Theorem 2. Since —B < H(w) < —A, we can assume (M,w) has quasi-
bounded geometry, by Lemma 13 and Theorem 9. Then, the radius of quasi-bounded
geometry depends only on A, B, and dim M. The desired result then follows from
Lemma 20 and Lemma 19. g

5. BERGMAN METRIC AND SECTIONAL CURVATURE

Let M be an n-dimensional complex manifold. We follow [GW79, Section 8] for
some notations. Let A0 (A1) = A™0(M) be the space of smooth complex differential
(n,0) forms on M. For ¢, € A0 define

2 J—
(w.0) = (172 [ o1 (1)
M
and
lell = v{e,0)-
Let L%n,()) be the completion of
{p € A lo]| < +o0}
with respect to || - ||. Then L%n o) is a separable Hilbert space with the inner product
(+,+). Define

H={p€ L%n,O) | ¢ is holomorphic}.
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Suppose H # {0}. Let {e;};>0 be an orthonormal basis of H with respect to the
inner product (-,-). Then, the 2n form defined on M x M given by

B(r,y) =) ej(@) Ae(y),  zy €M,
j=>0
is the Bergman kernel of M. The convergence of this series is uniform on every

compact subset of M x M (see also Lemma 21 below). The definition of B(z,y) is
independent of the choice of the orthonormal basis of H. Let

B(r) = Zej ) ANEj(x for all z € M.
7>0

Then B(z) is a smooth (n,n)-form on M, which is called the Bergman kernel form
of M. Suppose for some point P € M, B(P) # 0. Define

dd®log B = dd°logb

where we write B(z) = bdz! A---Adz" Adz! A--- AdZ" in terms of local coordinates
(2%,...,2™). Tt is readily to check that this definition is well-defined. If dd®logB is
everywhere positive on M, then we call dd®log*B = wg the Bergman metric on M.

We would like to prove Theorem 6. We shall use the notion of bounded geometry,
together with the following results, specifically Corollary 24. In fact, we only need the
case () being a bounded domain in C". Lemma 21 and Lemma 23 may have interests
of their own. In the following, when the boundary 02 of ) is empty, i.e., 2 = C", we
set dist(E,0Q) =

Lemma 21. Let Q be a domain in C". Let {f;};>0 be a sequence of holomorphic
functions on Q satisfying the following property: There is a integer Ng > 0 such that,
for all N > Ny,

N 9 N
/‘chfj(z)‘ aV < e foralle;eC,0<j<N. (5.2)
Q' -

7=0 7=0

Then, the series

Zf] = b(z,w)

converges uniformly and absolutely on every compact subset of  x Q. Furthermore,
for every compact subset E of €,

C(n)
b <t .
e b(z w)l < G E aym (5:3)
where C(n) > 0 is a constant depending only on n.
Proof. First, suppose that 0€) is nonempty. We assert that, for any z € 2,
N
C(n)
————~—— forall N > Ny. 4
Z‘f]( )| — dlSt(Z aQ) or a - 0 (5 )

§=0
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Here and below, we denote by C(n) > 0 a generic constant depending only on n.
Assume (5.4) momentarily. By the Cauchy-Schwarz inequality,

N - N N
S| <\ Y 15HER | S 15w
j=0 Jj=0 J=0

< C(n)

~ dist(z,0Q)™ - dist(w, 0Q)™

C(n)
— dist(E, 0Q)?"’

for all z, w in the given compact subset E and for all N > Ny. Then, letting N — 400
yields (5.3).

To show the first statement, by the Cauchy-Schwarz inequality it is sufficient to
show that the uniform convergence of 22 | f; (2)|? on every compact subset E of Q.
(This is not an immediate consequence of (5.4), however) Let us denote by B(z;7)
the open ball in C" centered at z of radius r. Let § = dist(E,0€)/4 > 0. Then, for
each zg € E, B(zp;29) C Q. By (5.4),

[ ek < Vo) < oo < +oc.

B(z030) d

It follows that, for each £ > 0, there exists a constant L, depending only on &, such
that
l+m

Z/ |fi(= 2)|?dV < e, foralll> L, and m > 1.
On the other hand, applying the mean value inequality to subharmonic function
SEE 1 £5(2)[2 on B(z0;6) yields

l+m l+m

] 2 C(n) . 2
;’f](z)‘ < 52n /B(zo;(s);\fj(w)] dVy,.

Hence,
I+
= C(n)

sup Z\fj S s €

B(z0;0)

Since E can be covered by finitely many balls such as B(zp;d), we have proven the
uniform convergence of > |f;(2)|? on E.

To show (5.4), fix an arbitrary z €  and N > Ny. We can assume, without loss
of generality, that |fo(2)2 + | f1(2)]* + -+ + | fn(2)|> # 0. Denote

. dlst(z, o0) S0
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Applying the mean value inequality to the subharmonic function |Z§V:0 cjfi(z)?
yields

N 5 ) N 2
jz;)cjfj(zr) < Vol(B(z;e))/B(z;e) jz;cjfj(g)‘ ¢

N
¢ f3(C)
7=0

C(n) al
< dist(z. 9Q)2n ] 2 . .
— dist(z,00)" ]z:% lej] by (5.2)

Letting

. fi(2)
T (fo)P A+ ()P
yields (5.4). This proves the result for {2 with nonempty boundary.

0<j<N,

If 09 is empty, then 2 = C". We can replace §2 in the previous proof by a large
open ball B(0; R) which contains the compact subset E. The same process yields

C(n)
< .
e bz w)l s Grmapomym 0 SR A
This shows (5.3), and hence, b = 0, for the case dist(E, 0Q) = 0. O

Remark 22. An example of b(z,w) in Lemma 21 is the classical Bergman kernel
function, for which the equality in (5.2) holds for all N > 0 and ¢;, 0 < j < N. The
arguments are well-known and standard (compare, for example, [BM48, p. 121-122]).
For our applications on manifold, however, we have to state and derive the estimate
under the weaker inequality hypothesis (5.2), and our estimate constant needs to be
explicit on dist(E, 0€2).

Lemma 23. Let Q be a domain in C". Let b(z,w) be a continuous function which is
holomorphic in z and W, and satisfies b(z,w) = b(w, z), for all z,w € Q. If Q # C",
then, for each compact subset E C 2,

C(n)alp!
(z,w)] < dist (B, D)l max |b(x,y)|, forall z,w € E. (5.5)

Here C(n) > 0 is a constant depending only on n, a and 8 are multi-indices with
al=a!l- o, lal=ar 4+ -+ ap, 03 = (0,1)* -+ (0n)?, and

Eq = {z € Q;dist(z, E) < dist(E,00Q)/2}.

If Q@ = C™ then (5.5) continues to hold, with Eq replaced by any closed ball whose
interior contains E.

|90 b(

Proof. 1t is sufficient to show (5.5) for the case Q@ C C"; the case @ = C" follows
similarly. The inequality clearly holds when o = 8 = 0, since E is contained in Eq.
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Consider the case 8 =0 but a # 0. Let § = \lfdlst(E 0Q) > 0. Pick z,w € E. By

Cauchy’s integral formula,

1! an!
07b(z, .

/ (c, w)d¢' - - d¢r
{[cn—zn|=g} (C1 — zh)aatl...(¢n — zn)an+l
It follows that

n)al

. C
|020(z,w)| < —— sup (G, w)] (5.6)
o1l cepn(z0)

C(n)a!
< e Mnax (G y)l-

Here D"(2;6) = {¢ € C™;|¢! — 21 < 6,...,|¢" — 2"| < &} satisfies D"(2;8) C Eq.

Consider the general case «a, # 0. Applying (5.6) with b(z,w) replaced by
8gb(z, w) yields

C(n)a

10005 b(z, w)| < ST Sup |05(C, w)|
CED™(2;6)
' [
= CWA G jolbw.0) (sinee BCw) = buw,))

8ol cepn(z0)

lBIC(n)
S et e b y)l, by (5.6).

Here C(n) > 0 denotes a generic constant depending only on n. O

Corollary 24. Let Q2 be a domain in C", and let b(z,w) be the function given in
Lemma 21. For each compact subset 2 C (1,

alBlC(n)
() = G3E, aqyerarA

‘80‘86 for all z,w € FE.
Here C(n) > 0 is a constant depending only onn, and o, § € (Z>0)" are multi-indices,
0% = (0,0)* -+ (0n), =l ap!, and |a] = a1 + -+ - + ag.

Remark 25. Corollary 24 in particular implies a pointwise interior estimate for the
Bergman kernel. This may be compared with the global estimates of Bergman kernel
function in the smooth bounded domain satisfying certain boundary condition such
as Bell’s Condition R (see, for example, [Ker72], [BB81], and [CS01, p. 144] and
references therein). Those estimates are based on the pseudo-local estimate of the
0-Neumann operator. The method here is entirely elementary, without assuming any
boundary condition.

Lemma 26. Let (M™,w) be a complete, simply-connected, Kdhler manifold satisfy
—K2<K( ) —k1 <0 (57)
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for two positive constants ko > k1 > 0. Let B(z,z) and wy be the Bergman kernel
form and Bergman metric on M. Assume that B/w"™ > ¢ on M for some constant
co > 0. Then, wy has bounded geometry, and satisfies

wy < C(n7007"€1a"€2>w on M7 (58)

where C(n, co, k1, k2) > 0 is a constant depending only on n, co, k1, and Ks.

Proof. By (5.7) and Lemma 14 we can assume, without loss of generality, that the
curvature tensor of w and all its covariant derivatives are bounded. On the other
hand, it follows from (5.7) and the standard Cartan-Hadamard theorem that, for a
point P € M, the exponential map expp : Tg pM — M is a diffeomorphism. This,
in particular, implies that the injectivity radius of M is infinity. Thus, the manifold
(M,w) is of bounded geometry, by the second statement of Theorem 9.

Since w has bounded geometry, there exists a constant » > 0, depending only on
n, K1, K2, such that for each point p € M, there is a biholomorphism v, from the
open ball B(r) = Bcn(0;7) onto its image in M such that 1,(0) = p and ¥ (w) is
uniformly equivalent to Euclidean metric on B(r) up to infinite order. In particular,
let g;; be the metric component of 1 (w) with respect to holomorphic coordinates

vl, ..., v" centered at p; then

C7H0i) < (97) < C(835) (5.9)
on B(r). Here B(r) denotes a ball in C™ centered at the origin of radius » > 0, and
C > 0 is a generic constant depending only on k1, k2, and n.

Let {¢;j}j>0 be an orthonormal basis of the Hilbert space H with respect to the
inner product (-, -) given in (5.1). Then, by definition

B(P,Q)=> ¢;(P)A¢;(Q),  forall P,Q e M.
720
Write ¢; = f;j(v)dvt A -+ A dv™ in the chart (B(r),v,,v7), for which we mean, as a

standard convention, ¢5¢;(v) = fj(v)dv! A--- A dv™ for v € B(r). Then, each f; is
holomorphic on B(r), j > 0.

We claim that the domain B(r) and sequence {f;} satisfy the requirement, (5.2),
in Lemma 21. Indeed, for each ¢ € H with ¢;¢ = hdv' A--- Adv™ on B(r), we have

h(v)|2dV = (—1)"°/2 h(v
/B(T)|<>| (-1) /Bmm

— (-1 n2/2
& /Iﬁp(B(T))(b/\qb

<~y /M¢A¢z (6,6).

Now for any N > 0 and any ¢; € C, 0 < j < N, substituting
N

N
¢ = qufy with  h(v) = chfj in B(r)

j=0 7=0

2dvr A AdUVT AT A - A dD™
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yields
N 9 N
[ anefav <=3 kb
B(r) =0 =0

This verifies (5.2); hence, the claim is proved. Therefore, we have
VB (v, w) = b(v,w)dv' A Adv" AdT A - ANda"™,  v,w € B(r),

in which

b(v,w) = Y fj(v) fi(w)

Jj=0
is a continuous function in B(r), holomorphic in v and w, and satisfies the interior
estimate in Corollary 24. Applying Corollary 24, with Q@ = B(r) and E being the

closure B(r/2) of B(r/2), yields

ABIC(n) _
m, fOI' all’UEB(T/2)

105856 (v,v)| <
On the other hand, by the hypothesis B (P, P)/w™(P) > ¢y for all P € M; hence,
b(v,v) > codet(g;;) > coC™" >0,
where (5.9) is used. Write wy = (v/=1/2)ge ;5dv" A dv’. Then,
9.7 =010y 05ib — b 20,:ib Oib
satisfies that
(7)< 0t (5,) < S0 002) (5.10)

by (5.9) again, and that

C(n,co)
LAY gog 7| < ——
Oy 05 9%.i3| < ~Snsoria vl

This proves that wyg has bounded geometry. The desired inequality (5.8) (or equiva-
lently, tr,wy < C) follows from (5.10). O

Note that the hypothesis B > cow™ in Lemma 26 is guaranteed by the left inequality
in Theorem 4 (1.1), whose local version is contained in [SY77, p. 248, line -4]. Thus,
Theorem 6 follows from the left inequality of (1.1) and Lemma 26.

Remark 27. A consequence of Theorem 6 is the following technical fact on the L2-
estimate, originally proposed (conjectured) by [GWT79, p. 145] to show Conjecture 5.
Fix arbitrary « € M and n € T, M. For any ¢ € H with ¢(z) = 0, define

n(e) =n(f),
where ¢ is locally represented by f(z)dz! A---Adz™ near . It is well-defined. Denote

En(x) = {p € H;p(x) = 0,n(p) = 1}.
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Corollary 28. Let (M,w) be a simply-connected complete Kdhler manifold whose
sectional curvature is bounded between two negative constants —B and —A. Then,
there exists a constant C > 0 depending only on dim M, A, and B, such that

min ||p|| > C, forany z € M, ne T, M.
ey (z)

Corollary 28 follows immediately from Lemma 8.17 (A) and Lemma 8.19 in [GWT79]
and Theorem 6.

Remark 29. Theorem 6 can also be compared with a different direction, proposed
by the second author, concerning the asymptotic behavior of the Bergman metric on
the higher multiple mK ;s of the canonical bundle for large m. The difference lies not
only in the fact that M is noncompact here, but also the situation that one has to
consider all terms for the case m = 1, rather than the leading order terms for the case
m — +00.

6. KAHLER-EINSTEIN METRIC AND HOLOMORPHIC CURVATURE

The goal of this section is to prove Theorem 3. We shall use the continuity method
(Lemma 31). Theorem 3 follows immediately from Lemma 13 and Lemma 31.

The proof of Lemma 31 differs from that of Cheng-Yau [CY80] and others mainly
in the complex Monge-Ampere type equation. The equation used here is inspired
by the authors’ work [WY16a]. This new equation is well adapted to the negative
holomorphic sectional curvature and the Schwarz type lemma.

As in Cheng-Yau [CY80], we define the Holder space C¥*(M) based on the quasi-
coordinates. Let (M,w) be a complete Kéhler manifold of quasi-bounded geometry,
and let {Vj, ¢; };”;1 be a family of quasi-coordinate chats in M such that

M = w;(V)).
i>1
Let k € Z>0 and 0 < a < 1. For a smooth function f on M, define
‘f|CkvO‘(M) = sup (|1/J;f|ckva(vj)>,
Jj=21
where [ - |gra(y;) is the usual Holder norm on V; C C". Then, we define k(M) to
be the completion of {f € C°°(M);|f|ck.a(ary < +o0} with respect to | - |cra(an-

Lemma 30. Let (M,w) be an n-dimensional complete Kdhler manifold of quasi-
bounded geometry, and let C**(M) be an associated Hélder space. For any function
[ €Cha(M), there exists a unique solution u € C¥T2%(M) satisfying

(w4 dd°u)"™ = " un
C7'w <w+ddu < Cw

on M. Here the constant C > 1 depends only on infy f, supy, f, infar(Anf), n, and
w, i which Ay f denotes the Laplacian of f with respect to w.
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The proof of Lemma 30 follows from [CY80, p. 524, Theorem 4.4], with their
bounded geometry replaced by the quasi-bounded geometry, which is used in the
openness argument, and the bootstrap argument from the third order estimate to
CF(M) estimate.

Lemma 31. Let (M,w) be an n-dimensional complete Kdhler manifold such that
H(w) < —-k1 <0

for some constant k1 > 0. Assume that for each integer ¢ > 0, the curvature tensor
Ry of w satisfying

sup |VIRy| < B, (6.1)
xeM

for some constant By > 0, where V¢ denotes the qth covariant derivative with respect
to w. Then, there exists a smooth function u on M such that wxg = dd¢logw™ + dd‘u
s the unique Kahler-Einstein metric with Ricci curvature equal to —1, and satisfies

C 'w < wkp < Cw, (6.2)

where the constant C > 0 depends only on n and w. Furthermore, the curvature
tensor Ry ke of wke and its qth covariant derivative satisfies

sup |Vg<ERm,KE‘ < Cy,
xeM
for some constant Cy depending only on n, and By, ..., By.

Proof. By hypothesis (6.1) and Theorem 9, the complete manifold (M, w) has quasi-

bounded geometry. Denote by C*< (M) the associated Holder space, k > 0,0 < a < 1.
Consider the Monge-Ampere equation
(tw + dd°log w™ + ddu)" = e*w",
-1 c n c (MA)t
¢, w<tw+ddlogw" + ddu < c;w,

on M with t > 0, where the constant ¢; > 1 may depend on t. First, we claim that
for a sufficiently large ¢, (MA); has a smooth solution u such that

C™lw < tw + ddlogw™ 4 ddu < Cw on M, (6.3)

where C' > 0 is a constant depending only on n and w. To see this, note that
—dd“logw™ is precisely the Ricci curvature of w. By (6.1) the curvature tensor of w
is bounded; then, for an arbitrary t; > \/nBy,

tiw > —dd°logw™ on M.
It follows that
tw + dd®logw™ > tyw for all ¢t > 2t7 > 0.

This implies that tw + dd®logw™ defines complete Kéahler metric on M; moreover,
since w is of quasi-bounded geometry, so is tw + dd¢logw™ for t > 2¢;. In particular,

n

F:log( e Ck(M), forallk>0,0<a<1.

w
tw + dd¢log w™)™
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It then follows from Lemma 30 that for ¢ > 2¢1, equation
(tw + dd®log w™ 4 dd°u)™ = e“ ' (tw + dd° log w™)"

admits a solution u € Ck¥¥22(M) for all k > 0 and 0 < o < 1 and satisfies (6.3). This
proves the claim.

Let
T = {t € [0,2t,]; system (MA); admits a solution u € C**2%(M)}.

Then T is nonempty, since 2¢t; € T. We would like to show T' is open in [0, 2¢1]. Let
to € T with ug, € C*+2:%(M) satisfying (MA);,. The linearization of the operator

Cl n C n
M(t,v) = log (tw +dd og:u + dd“v)
w
with respect to v at t = tg, v = uy, is given by
d
Muto (t(), Uto)h = £M(to,ut0 + Sh) = (Ato - 1)h
s=0

Here A, denotes the Laplacian with respect to metric wy, = tow+dd®log w™ + dduy,.
Note that cg)lw < wyy < cow. In particular, wy, is complete. Furthermore, wy,
has quasi-bounded geometry up to order (k,«), that is, wy, has quasi-coordinates
satisfying (2.1), and (2.2) with the norm | - [ci(yy replaced by |- |cka(y. Then,
Ay —1: CFF29(M) — CH*(M) is a linear isomorphism, which follows from the same
process as that in [CY80, pp. 520-521], with their bounded geometry replaced by the
quasi-bounded geometry. Thus, T is open, by the standard implicit function theorem.

To show T is closed, we shall derive the a priori estimates. Applying the arithmetic-
geometry mean inequality to the equation in (MA); yields

ne™’™ < nt — s, + Apu < C + Ay u,

where s, = —tr,dd°logw™ is precisely the scalar curvature of w. Henceforth, we de-
note by C' and C} generic positive constants depending only on n and w. Applying the
second author’s generalized maximum principle (see, for example, [CY80, Proposition
1.6]) yields

supu < C. (6.4)
M
Next, observe that (MA); implies
Ric(wy) = —dd®logwi® = —wy + tw, (6.5)

where w; = tw+dd¢logw™ +dd“u > 0. Applying [WY16a, Proposition 9] with «’ = w;
yields

1 t
Alog S > [Mﬁ-f]S—l,
2n n
where S = tr,,w. Again by the second author’s generalized maximum principle,
2
sup S < —— (6.6)

M (TL+ 1)/‘{1‘
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Combining (6.4) and (6.6) yields the estimates of w up to the complex second order
(cf. [WY16a, WY16b]). In fact, by (6.6),

_u (wn)yll < S < 2
e n = | — — _
wr/ T n T (n+ 1)k
This implies
. (n+ 1)I€1
fu>—-nlog—F—.
infu > —nlog 5

Moreover, by (6.4) we have sup(wj’/w™) < C. This together with (6.6) implies
n—1 n

trow < n(g) (w—t) <(C.

n w™

Hence, A,u < C and

(n + 1)%1

2n
One can apply [Yau78c, p. 360, 403—406] to the third order term

w < w < (tryw)w < Cw. (6.7)

== g;j;kg:’s;fg/ﬁglsjg/k{
to get
A (ZE+CALu) > C1(E+ CAyu) — Oy,
where ggi is the metric component of w; and the subscript ; &k in ggj;k denotes the

covariant derivative along 9/0z* with respect to w. Thus, sup,, Z < C by the second
author’s generalized maximum principle. Now applying the standard bootstrap argu-
ment (see [Yau78c, p. 363]) to the equation in (MA); with the quasi-local coordinate
charts yields [|ul|cr+2.a(p) < C. The desired closedness of T' then follows immediately
from the standard Ascoli-Arzela theorem and (6.7).

Hence, we have proven ¢t = 0 € T with u € C**(M). Then, formula (6.5) tells us
that dd®logw™ + ddu is the Kahler-Einstein metric. The uniform equivalence (6.2)
and boundedness of covariant derivatives of its curvature tensor follow immediately
from the above uniform estimates on u. The uniqueness of complete Kéhler-Einstein
metric of negative curvature follows immediately from the second author’s Schwarz
Lemma ([Yau78a, Theorem 3]; see also [CY80, Proposition 5.5]). O
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