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1. Introudction

In elementary complex analysis, we know that there is no bounded nonconstant
holomorphic functions on the complex plane C. By contrast, there are plenty of
bounded nonconstant holomorphic functions on the unit disk D. This phenomenon
may also be interpreted in terms of geometry. That is, the complex plane admits no
metric of curvature ≤ −1, while the unit disk has at least one, the Poincaré metric,
given by

ds2
P =

4|dz|2

(1− |z|2)2

which has curvature −1.

The geometric generalization of the above phenomenon gives one of the motiva-
tions for the current article. We roughly divide the geometric generalization into two
categories: The first one is on a compact complex manifold, which is the content of
Section 2. In particular, according to the current development, we shall focus on the
compact Kähler manifold. The second one is on the complete noncompact Kähler
manifolds; see Section 3, and we assume simply-connectedness in several cases. In the
last section, Section 4, we shall discuss some open problems.

We must point out that, given the extensive study of negative complex geometry
since the time of Riemann, it is impossible for this short article to include all the
developments. Based on our biased preferences, we narrow down to discuss the recent
development of several questions and conjectures raised in the 1970s, which are the
driving force of our own work. However, even for these directions, our bibliography
is by no means complete.

2. Negative holomorphic curvature on compact Kähler manifolds

Let us generalize the fact that the unit disk admits plenty of holomorphic functions
to the situation of a compact complex manifold. Since the manifold is compact, there
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is no bounded nonconstant holomorphic function. However, a natural candidate to
replace a holomorphic function is the holomorphic section of the canonical bundle
KM over M . Such a holomorphic section is locally given by

f(z)dz1 ∧ · · · ∧ dzn,
where n = dimCM , and the coefficient f is a holomorphic function defined on a local
coordinate chart. In particular, when M is a domain of Cn, the holomorphic section
of KM is a one-to-one correspondence to the holomorphic function on M .

More generally, one can consider the holomorphic section of the mth product mKM

of the canonical bundle KM , where m is a positive integer. Its holomorphic section
locally is just f(z)(dz1 ∧ · · · ∧ dzn)m in which f is a locally defined holomorphic
function. Again if M is a domain of Cn, the holomorphic section of mKM one-to-one
corresponds to the holomorphic function on M . A nature question is as below.

Question 2.1. When does mKM have plenty of holomorphic sections?

A classical result of Kodaira tells us that, if KM is positive (in the sense that there is
a metric on KM such that the curvature form is positive definite), then KM is ample;
in particular, for all sufficiently large m, the bundle mKM have lots of holomorphic
sections. Now the question becomes

Question 2.2. When does a complex manifold M have KM > 0?

A well-known theorem of S. S. Chern says that if M admits a metric with negative
Ricci curvature, then KM > 0. In view of the resolution of Calabi conjecture in the
case of negative scalar curvature, independently by the second author and Aubin, we
know that KM > 0 if and only if M admits a Kähler-Einstein metric with negative
scalar curvature. On the other hand, in the 1970s there were considerable research
activities concerning the holomorphic maps. This direction naturally leads to the
above questions.

The second author has conjectured that if a compact complex manifold M has
negative holomorphic sectional curvature, then KM > 0. Moreover, a conjecture of
Lang asserts that if M is projective and Kobayashi hyperbolic, then KM > 0, while
the Kobayashi conjecture extends Lang’s conjecture to a compact Kähler manifold.
All three conjectures would continue to hold for submanifolds provided they hold for
the ambient manifolds, because of the decreasing property of holomorphic sectional
curvature and the Kobayashi hyperbolicity.

M hyperbolic KM > 0

H < 0

Kobayashi–Lang

Schwarz

Yau

These conjectures are related via the Schwarz Lemma: If M has negative holomorphic
curvature, then M is Kobayashi hyperbolic. Its converse is not true in general, in
view of the hyperbolic surface constructed by Demailly [Dem97, Theorem 8.2].
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Several authors have made contributions to these conjectures. In complex dimen-
sion two, these are answered affirmatively independently by Bun Wong [Won81] and
Campana [Cam91], by means of the classification theory of compact complex surfaces.
A short direct proof is later provided by the join paper of Godon Heier, Steven Lu, and
Bun Wong [HLW10] using only standard algebraic geometry (the Nakai-Moishezon-
Kleiman criterion, the Riemann-Roch theorem, and the Hodge index theorem) and a
generalized Gauss-Bonnet theorem due to Bishop-Goldberg.

In higher dimensions, it is natural to first consider the projective algebraic man-
ifolds, where some algebraic-geometric tools and partial classifications are available.
Peternell [Pet91] proves the Kobayash-Lang conjecture for projective three-fold except
for the Calabi-Yau threefold which contain no rational curves.

As a testing case, together with Pit-Mann Wong, we prove several years ago the
second author’s conjecture for all projective manifolds with Picard number equal to
one [WWY12]. The holomorphic sectional curvature in [WWY12] is only assumed
to be quasi-negative, i.e., nonpositive everywhere and negative at one point. The
quasi-negativity of holomorphic curvature may not be stronger than the Kobayashi
hyperbolicity, as the projective manifold of quasi-negative holomorphic curvature may
contain elliptic curves.

The projective threefold case of the second author’s conjecture has been completely
settled by a series of papers of Heier-Lu-Wong [HLW10, HLW16], which make an
interesting connection to the abundance conjecture in the algebraic geometry. They
indeed prove the second author’s conjecture by assuming the validity of the abundance
conjecture, which is known to hold for dimension less than four.

More precisely, Heier-Lu-Wong prove that if a projective manifold with negative
holomorphic sectional curvature then the canonical bundle is nef, and the nef dimen-
sion is equal to the dimension of the manifold. A version of the abundance conjecture
asserts that for a projective manifold with nef canonical bundle, the Kodaira dimen-
sion is equal to the nef dimension, that is, the manifold is of general type. Since the
manifold contains no rational curve, the canonical bundle is ample.

We remove the need for the abundance conjecture in [WY16a]. In fact, [WY16a]
provides two slightly different proofs for the second author’s conjecture for the pro-
jective manifolds in all dimensions. That is, if a projective manifold M admits a
Kähler metric with negative holomorphic sectional curvature, then KM is ample.
Furthermore, every smooth subvariety in M also has ample canonical bundle, in view
of the decreasing property of holomorphic sectional curvature. In particular, every
nonsingular subvariety of a smooth compact quotient of the unit ball in Cn has ample
canonical bundle.

The first proof in [WY16a] reduces to show the integral inequality

ˆ
M
c1(KM )n > 0.
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In fact, the hyperbolicity implies M contains no rational curve; by Mori’s theory, KM

is nef. The nefness together with the integral inequality implies KM is big, which is
due to the result of Demailly, Siu, Trapani, and other people, as an application of
Demailly’s holomorphic Morse inequality.

An important step in [WY16a] is to introduce a Monge-Ampère type equation (see
(2.1)) to construct a family of Kähler metrics whose Ricci curvature has a uniform
lower bound. This allows one to apply the refined Schwarz Lemma to show the
desired integral inequality. The refined Schwarz Lemma is initiated by Ahlfors [Ahl38],
developed by Chern [Che68], the second author [Yau78a], Royden [Roy80], and many
other people. The version used in [WY16a] is a strengthen result of our previous work
joint with Fangyang Zheng [WYZ09], and with Pit-Mann Wong [WWY12].

The Monge-Ampère type equation (2.1) may be compared with the equation of
the form (ω + tΦ + ddcu)n = γ(t)ωn constructed earlier in [WYZ09], where Φ is a
given (1, 1) form, γ is given a smooth function on t ∈ R, and we want to solve u for
t = 1. The latter equation was used to solve a smooth representative for a given nef
cohomology class on a compact Kähler manifold of nonnegative quadratic bisectional
curvature. The equation in [WYZ09] is later bypassed by X. Zhang [Zha12], Chau-
Tam [CT12], and others.

The second proof in [WY16a] is to directly show that the family of metrics converges
to a Kähler-Einstein metric, which implies KM > 0. The second proof again make
uses of the Monge-Ampère type equation (2.1), and the refined Schwarz lemma. The
difference is that we can derive all uniform estimates with constants depending only
on the background metric.

By using both the Monge-Ampère equation and the refined Schwarz Lemma in
[WY16a], Tosatti-Yang [TY17] show that if a Kähler manifold has nonpositive holo-
morphic sectional curvature, the canonical bundle is nef. This combining the second
proof in Wu-Yau [WY16a] enable them to extend our result to the Kähler manifolds.
In [WY16b] we provide a direct proof of the second author’s conjecture in the Kähler
case, by modifying the second proof in [WY16a]. This proof uses purely geometric
analysis, bypassing the notion of nefness. The proof will be given below.

It is natural to extend these results to the case the holomorphic sectional curvature
H is quasi-negative, as in Wong-Wu-Yau [WWY12]. This extension is established by
Diverio-Trapani [DT19] and Wu-Yau [WY16b], again using the Monge-Ampère type
equation and the refined Schwarz lemma. In this situation, the key is the compactness
argument. Diverio-Trapani uses the pluripotential theory, while we use an elementary
lemma inspired by the work of S. Y. Cheng and the second author [CY75]. There
are other extensions or related work (see for example [HLWZ18], [YZ19], [Cad], [FX],
[Nom18], [Gue18], [Lee18]).

We now summarize some of the recent results and provide a unifying proof below.
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Theorem 2.3 ([WY16a], [TY17], [DT19], [WY16b]). Let (M,ω) be a compact Kähler
manifold, and H(ω) be the holomorphic sectional curvature of ω.

(i) If H(ω) < 0 everywhere on M , then KM > 0.
(ii) If H(ω) ≤ 0 everywhere on M , then KM is nef.
(iii) If H(ω) is quasi-negative, i.e., H(ω) ≤ 0 everywhere and H(ω) < 0 at one point

of M , then KM > 0.

First to show (i). Inspired by the nefness of KM , we consider{
(tω + ddc logωn + ddcu)n = euωn, t ≥ 0,

ωt ≡ tω + ddc logωn + ddcu > 0.
(2.1)

Here ω is the background Kähler metric with negative holomorphic sectional curva-
ture, and ddc logωn = −Ric(ω) is the Chern form representing the first Chern class
of KM .

We would like to solve u for t = 0, by the continuity method. First, we claim that
for a sufficiently large t1, the equation has a smooth solution. (This is indeed an
important step which enables us to bypass the nefness.) To see this, we can pick a
large t1 such that t1ω+ ddc logωn is positive definite on the compact manifold. Then
tω + ddc logωn defines a Kähler metric since it is d-closed. Note that the equation
can be rewritten as

(t1ω + ddc logωn + ddcu)n = eu+f (t1ω + ddc logωn)n,

where f is a smooth function given by

f = log
ωn

(t1ω + ddc logωn)n
.

This equation has a smooth solution u, by the early work of the second author on the
Calabi conjecture [Yau78c]. This proves the claim.

Let
I = {t ∈ [0, t1];ωnt = euωn, ωt > 0}.

Then I is not empty, since t1 ∈ I. To see I is open in [0, t1], let t0 ∈ I with solution
ut0 . Define

M(t, v) = log
(tω + ddc logωn + ddcv)n

ωn
− v

for all (t, v) in a near (t0, ut0). Then M(t0, ut0) = 0. Note that the linearization of
M at (t0, ut0) with respect to v is precisely given by

∆ωt0
− 1,

which is invertible between the Hölder spaces. Thus, applying the implicit function
theorem yields the openness of I in [0, t1].

The closedness of I requires the Schwarz Lemma. We use the following version of
Schwarz Lemma, which is, in turn, based on [Yau78a, Roy80, WYZ09, WWY12].
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Lemma 2.4 ([WY16a]). Let Mn be a complex manifold with two Kähler metrics ω1

and ω2. If H(ω1) ≤ −κ and Ric(ω2) ≥ λω2 + µω1, then

∆ω2 log(trω2ω1) ≥
((n+ 1)κ

2n
+
µ

n

)
trω2ω1 + λ.

Here λ, κ, µ are continuous functions on M and κ ≥ 0, µ ≥ 0 on M .

The key feature of the Monge-Ampère equation is that ωnt = euωn implies

Ric(ωt) = −ωt + tω, supu ≤ C.
Since H(ω) < 0 and M is compact, H(ω) ≤ −κ for some constant κ > 0.

Applying the Schwarz lemma ω1 = ω and ω2 = ωt yields

∆ω2 log(trωtω) ≥
((n+ 1)κ

2n
+
t

n

)
trωtω − 1.

By the maximum principle,

trωtω ≤
2n

(n+ 1)κ
.

The estimates on trωtω and supu are sufficient for the closedness of I, by the
argument in [Yau78c]. One way to see this is as below. We can normalize at one
point such that the components of ω satisfies gij̄ = δij and the components of ωt
satisfies g′

ij̄
= λiδij . The bound on supu yields

λ1 · · ·λn ≤ C
while the bound on trωtω is

trωtω =
1

λ1
+ · · ·+ 1

λn
≤ C.

By the elementary inequality
n∑
i=1

λi ≤ (trωtω)n−1
n∏
i=1

λi ≤ C.

Hence,

C−1 ≤ λi ≤ C, i = 1, . . . , n.

This also gives a lower bound on u, as

eu = λ1 · · ·λn ≥ C−n.
Thus, we obtain

C−1ω ≤ ωt ≤ Cω,
as well as the estimates of u up to the second order.

The third order estimate of u can be derived in a similar way as in my early work:

Let Y ≡ g′
ij̄;k

g′
r̄a;b̄

g′ir̄g′aj̄g′kb̄ to get

∆ωt(Y + C∆ωu) ≥ C1(Y + C∆ωu)− C2.
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Hence, by the maximum principle,

Y ≤ C.
Now letting t→ 0 we get a smooth solution u∗ satisfying

(ddc logωn + ddcu∗)
n = eu∗ωn,

ddc logωn + ddcu∗ > 0,

which gives the desired Kähler-Einstein metric with negative scalar curvature. This
in particular implies the canonical bundle is positive. Thus, statement (i) is proved.

Next to show (ii). It is sufficient to solve the Monge-Ampère type equation

ωnt = (tω + ddc logωn + ddcu)n = euωn, ωt > 0,

for every small t > 0. Again use the continuity method: The nonemptyness, openness,
and C0 estimate are the same as (i). Only difference is that the upper bound κ of
H(ω) can be zero. Now the Schwarz Lemma reads

∆ωt log(trωtω) ≥ t

n
trωtω − 1.

It follows that

trωtω ≤
n

t
≤ n

t2
for all t2 ≤ t ≤ t1.

Here t2 > 0 is arbitrary. The C2 estimate becomes

t2C
−1ω ≤ ωt ≤ Ct1−n2 ω.

The higher order estimates of u depends on t2. Since t2 > 0 is arbitrary, we obtain
a smooth solution u of ωnt = euωn. In particular, euωn gives rise to a smooth metric
on KM so that its curvature form

ddc log(euωn) = ωt − tω > −tω.
This implies KM is nef. This proves (ii).

Let us now prove (iii). Since H(ω) ≤ 0 implies that KM is nef and M contains no
rational curve, it is sufficient to show KM is big (this is indeed based on Demailly’s
fundamental work on the Morse inequality), i.e.,ˆ

X
c1(KM )n > 0.

Note that ˆ
X
ωnt =

ˆ
X
c1(KM )n + tn

ˆ
X
c1(KM )n−1 ∧ ω +O(t2), t→ 0.

It suffices to find a sequence tj such that

lim
j→+∞

ˆ
X
ωntj > 0.

We have to bound maxutj away from −∞.
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The following lemma is inspired by the joint work of the second author with
S. Y. Cheng [CY75].

Lemma 2.5 ([WY16b]). Let (M,ω) be an n-dimensional compact Kähler manifold,
and let v be a C2 function satisfying v ≤ −1 on M and

∆ωv ≥ −C0

for some constant C0 > 0 on M . Then,ˆ
M
| log(−v)|2ωn +

ˆ
M
|∇ log(−v)|2ωn ≤ C

[
1 + min

M
(−v)

]
where C > 0 is a constant depending only on n, ω, and C0.

Assume Lemma 2.5 momentarily. Let us proceed to complete the proof of (iii).
Note that trωωt > 0 implies

∆ωu ≥ −nt+ s ≥ −C0.

Thus, the hypothesis in Lemma 2.5 is satisfied. Then, Lemma 2.5 allows us to apply
the Rellich compactness lemma. Apply the compactness lemma to vt = ut−maxut−1
to obtain a sequence log(−vtj ) converges in Lq(M) to w. Thus,

vtj −→ −ew almost everywhere on M.

Applying Schwarz lemma and elementary inequality to obtain

∆ωtj
log(trωtj

ω) ≥ (n+ 1)κ

2
e−

maxutj
n − 1.

Integrating against ωntj yields

exp
(
−

maxutj
n

)
≤

2
´
M evtjωn

(n+ 1)
´
M κevtjωn

≤ C,

since κ > 0 in an open subset of M . This gives the desired uniform bound on maxutj .

By passing to a subsequence we can assume utl → −ew + c almost everywhere in
M . Hence,

lim
l→+∞

ˆ
M
ωntl = lim

l→+∞

ˆ
M
eutlωn > 0.

This completes the proof of the result that H(ω) being quasi-negative implies KM is
ample.

One way to see Lemma 2.5 is as below. We compute

∆ω log(−v) =
−∆ωv

−v
− |∇ log(−v)|2.

Since ∆ωv ≥ −C0 and minM (−v) ≥ 1, integrating over M yieldsˆ
M
|∇ log(−v)|2 ≤ C0

ˆ
M
ωn.
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On the other hand, applying the weak Harnack inequality (see [GT01, p. 194, Theo-
rem 8.18] for example) to ∆ω(−v) ≤ C0 yields that, for any 1 ≤ q < n/(n− 1),( ˆ

M
(−v)qωn

)1/q
≤ C

[
1 + min

M
(−v)

]
. (2.2)

In particular, put q = 1 and note (−v) = elog(−v) ≥ [log(−v)]2/2. This implies the L2

norm of log(−v). Combining these two inequalities yields the desired estimate.

Here is a technical remark. Note that the estimate for q = 1 in (2.2) is sufficient for
our purpose here. For this case, one can also make use of positive Green’s function
as in [Yau78c, p. 352] (compare [GW16]). Let v(x0) = maxX v. Apply the positive
Green’s function with respect to ω yields

min
M

(−v) = −v(x0) =
1

Vol(M)

ˆ
M

(−v) +

ˆ
M
G(x0, x)∆ωv(x)

≥ 1

Vol(M)

ˆ
M

(−v)− C.

This implies (2.2) for q = 1.

3. Invariant metrics on negatively pinched complete Kähler manifolds

We seek generalize the positivity to complete noncompact Kähler manifolds. This
is in fact the direct higher dimensional analogue of the phenomenon of the unit disk
mentioned in the introduction. In the general situation we replace the unit disk by
a simply connected complete Kähler manifold whose sectional curvature is bounded
above by a negative constant. Up to this moment, it is still a conjecture that such a
manifold admits one bounded nonconstant holomorphic function (cf. [Yau82a, p. 678,
Problem 38]). (Of course, if it is true then the manifold would possess many bounded
nonconstant holomorphic functions.) We remark that the simply-connectedness as-
sumption is needed, in view of the example of P1 \ {0, 1,∞}.

We can still generalize the positivity to the complete noncompact Kähler manifolds
in the following sense. Recall that for a compact Kähler manifold M , the ampleness
of the canonical bundle KM is equivalent to the existence of Kähler-Einstein metric
on M with negative scalar curvature. Thus, we can characterize the positivity of KM

on a complete noncompact manifold by the existence of a complete Kähler-Einstein
metric of negative scalar curvature. Our first result in this direction is given below.

Theorem 3.1 ([WY17]). Let (M,ω) be a complete Kähler manifold whose holo-
morphic sectional curvature H(ω) satisfies −κ2 ≤ H(ω) ≤ −κ1 for two constants
κ1, κ2 > 0. Then, M admits a unique complete Kähler-Einstein metric ωKE with
Ricci curvature equal to −1. Furthermore, ωKE is uniformly equivalent to ω, and the
curvature tensor of ωKE and all its covariant derivatives are bounded.
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Theorem 3.1 differs from the previous result on complete Kähler-Einstein metrics
such as [CY80] and [TY87] in that it essentially assumes no condition on Ric(ω). The-
orem 3.1 generates new examples of complete Kähler-Einstein manifolds (see [WY18,
Section 5]). For instance, every closed submanifold Σ in a bounded strictly pseu-
doconvex domain in Cn admits a complete Kähler metric with negatively pinched
holomorphic sectional curvature, by virtue of the distance decreasing property of H
and [Kle78, p. 279, Corollary 1]. Then, by Theorem 3.1, the manifold Σ admits a
complete Kähler-Einstein metric with Ricci curvature equal to −1.

The proof again makes use of the Monge-Ampère equation in the proof of Theo-
rem 2.3. A major difference is that, on the complete noncompact manifold we need an
effective version of the quasi-bounded geometry, by which we can adapt the Schauder
type estimate to handle the nonemptyness, openness, and the bootstrap argument in
the continuity method. We shall describe the idea shortly.

Notice that the complete Kähler-Einstein metric of negative scalar curvature is
one of the classical invariant metrics on a complex manifold. An invariant metric
is a metric (or a length function) L on a complex manifold M such that every bi-
holomorphic map F gives an isometry F ∗L = L. Thus, an invariant metric depends
only on the complex structure of the complex manifold. Besides the Kähler-Einstein
metric of negative scalar curvature, the classical invariant metrics also include the
Bergman metric, the Carathéodory-Reiffen metric, and the Kobayashi-Royden met-
ric (see [Wu93] for example).

The invariant metrics are closely related to the complete Kähler manifold with neg-
ative curvature. Let us recall some conjectures. A conjecture which is stronger than
the one given above states the following: If a simply-connected complete Kähler man-
ifold has sectional curvature bounded above by a negative constant, then the manifold
is biholomorphic to a bounded domain in Cn (see [SY77, p. 225] and [Wu83, p. 98];
compare [Wu67, p. 195, (1)] and [Yau82b, p. 47, c.]. This problem has in fact been
proposed by the second author back in 1971). On the other hand, it has been well-
known that on a bounded strictly pseduoconvex domain in Cn with smooth boundary,
the four classical invariant metrics exist and are all quasi-isometric to each other; see
for example [Die70, Gra75, CY80, Lem81, BFG83, Wu93]. The quasi-isometries do
not extend to bounded weakly pseudoconvex domains with smooth boundary, how-
ever; see [DFH84] for example.

On Kähler manifolds, R. E. Greene and H. Wu have posted two notable conjec-
tures. Their first conjecture concerns the Kobayashi-Royden metric. Let us recall the
definition. Let M be a complex manifold and T ′M the holomorphic tangent bundle.
For each x ∈ M and η ∈ T ′xM , consider a holomorphic map φ from the unit disk to
M such that φ(0) = x and φ∗(v) = η. The Kobayshi-Royden metric K(x, η) is define
to be the infimum of the Euclidean norm |v|0 over all such maps φ.
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The Greene-Wu conjecture states that, if a simply-connected complete Kähler mani-
fold has sectional curvature bounded between two negative constants, then the Kobayashi-
Royden metric is quasi-isometric to the background Kähler metric [GW79, p. 112]. In
fact, it is well-known that, due to the Schwarz Lemma, the Kobayashi-Royden metric
is always bounded below by a hermitian metric, provided the holomorphic sectional
curvature of the hermitian metric is bounded above by a negative constant. Thus, it
is the upper bound of Kobayashi-Royden metric that requires a proof.

By using the quasi-bounded geometry develop in the proof of Theorem 3.1, we are
able to prove a stronger result, which removes the simple connectedness, and relaxes
the sectional curvature by the holomorphic sectional curvature in the Greene-Wu
conjecture. In particular, the manifold in Theorem 3.2 does not have to be Stein.

Theorem 3.2 ([WY17]). If a complete Kähler manifold with holomorphic sectional
curvature bounded between two negative constants, then its Kobayshi-Royden metric
is uniformly equivalent to the background Kähler metric.

We remark that Greene-Wu [GW79, p. 112] proposed to show their conjecture by
studying the extremal holomorphic map φ : D → M which realizes the infimum in
the definition of the Kobayashi-Royden metric K. Up to this date, it is still lack of a
good knowledge on the extremal map.

Our approach to Theorem 3.2 can be motivated by the interior estimate given
below. For any x ∈ M and ξ ∈ T ′xM , applying the mapping decreasing property to
the coordinate chart (B(r) ⊂ Cn, ψ) with ψ(0) = x and ψ∗(v) = ξ yields

KM (x, ξ) ≤ Kψ(B(r))(x, ξ) ≤ KB(r)(0, v) =
|v|Cn

r
.

Then, what we expect to have are the properties that

|v|Cn ≤ Cψ∗ω(0, v) = C|ξ|ω,
or more generally,

C−1ωCn ≤ ψ∗ω ≤ CωCn ,

and that the constants C, r > 0 depend only on the curvature bounds. These prop-
erties lead us naturally to the quasi-bounded geometry, for which we shall discuss
below.

Greene-Wu also conjectures on the Bergman metric. Let us recall the definition.
Let M be an n-dimensional complex manifold. There is a natural inner product on
the smooth (n, 0) forms given by

〈ϕ,ψ〉 = (−1)n
2/2

ˆ
M
ϕ ∧ ψ.

This inner product is independent of the hermitian metrics on M and on KM .

Denote by H the set consisting of holomorphic n-forms ϕ such that the induced
norm ‖ϕ‖ < +∞. Then H is a separable Hilbert space. Assume H 6= {0}. Then H
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contains an orthonormal basis {ej}j≥0 with respect to the inner product. One can
define an (n, n) form B on M ×M by

B(p, q) =
∑
j≥0

ej(p) ∧ ej(q).

This definition is independent of the choice of orthonormal basis. Along the diagonal
of M ×M , we can express B(p, p) in terms of local coordinates (z1, . . . , zn) as

B(z, z) = b(z, z)dz1 ∧ · · · ∧ dzn ∧ dz̄1 ∧ · · · ∧ dz̄n.

We call B(p, p) and b(z, z) the Bergman kernel form and Bergman kernel function on
M , respectively. When M is a domain in Cn, the Bergman kernel function b recovers
the classical Bergman kernel. We further assume that the Bergman kernel form B > 0
everywhere on M . Let

ωB = ddc log b,

which is globally defined on M . We call ωB the Bergman metric on M , if ddc log b > 0
everywhere on M . By contrast to those Bergman metrics defined via a general positive
line bundle, the Bergman metric given here is an invariant metric on M .

Based on [SY77], Greene-Wu [GW79, p. 144] proves the following result: If (M,ω)
is complete, simply-connected, Kähler manifold whose sectional curvature is pinched
between two negative constants, then M admits a Bergman metric ωB, which dom-
inates ω, i.e., ωB ≥ Cω on M . In particular, ωB is complete. Then, Greene-Wu
conjectures that the Bergman metric ωB is also dominated by ω; in other words, ωB

is quasi-isometric to ω [GW79, p. 145].

We remark that, as far as the existence of a complete Bergman metric is con-
cerned, the curvature condition can be relaxed to the sectional curvature ≤ A/r2; see
for example [CZ02] and references therein. On the other hand, for this conjecture,
the simply-connectedness is needed, as we have examples of P1 \ {0, 1,∞} and the
punctured disk.

This conjecture of Greene-Wu would follow immediately if one can derive an volume
estimate ωnB ≤ Cωn. However, the volume estimate is not trivial: The Schwarz lemma
does not apply, as the curvatures of Bergman metric do not have a sign in general.
As another attempt, Greene-Wu [GW79, p. 145] proposed to show the following
technical statement: For every x ∈ M , there is a uniform positive lower bound for
‖ϕ‖ where ϕ runs over all square integrable holomorphic n-forms such that ϕ vanish
at x of order 1. However, such an estimate seems no easier than the conjecture itself,
and it is now a consequence of our next result.

We take a different approach, using the bounded geometry to derive the pointwise
interior estimate. This enables us to prove the conjecture of R. E. Greene and H. Wu.

Theorem 3.3 ([WY17]). If (M,ω) is a complete, simply-connected, Kähler manifold
whose sectional curvature is bounded between two negative constants −A and −B,
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then its Bergman metric ωB has bounded geometry and satisfies

ωB ≤ Cω on M,

where the constant C > 0 depends only on A, B, and dimM . Consequently, ωB is
quasi-isometric to ω.

The following result follows immediately from Theorem 3.1, Theorem 3.2, and
Theorem 3.3.

Corollary 3.4. On a complete, simply-connected, Kähler manifold M , the three clas-
sical invariant metrics, Kähler-Einstein, Bergman, and Kobayashi-Roydent metrics
exist and are all quasi-isometric to each other.

We in fact provide certain unifying approach to these three seemingly totally dif-
ferent metrics. Let us consider for example the Kähler-Einstein metric of negative
scalar curvature. As in the compact case, we employ the Monge-Ampère equation{

(tω + ddc logωn + ddcu)n = euωn,

ωt ≡ tω + ddc logωn + ddcu > 0
(MA)t

with the continuity method. The key difference is below: Notice that the openness,
nonemptyness, and bootstrap argument use the Schauder type estimate. The stan-
dard Schauder estimate requires the injectivity radius of the complete manifold to be
positive, for which (M,ω) need not have. An example is the Poincaré punctured disk.

To overcome this difficulty, we need to develop the notion of (quasi-) bounded
geometry initiated by the second author with S. Y. Cheng [CY80]. Let us begin
with the Riemannian version of quasi-bounded geometry, pointed out by the second
author in 1980 ([WL97, Appendix]), as an extension of the bounded geometry [CY80,
Section 8]. The idea goes as follows: If the curvature tensor of the Riemannian
manifold (M,ω) is bounded, then there is a constant R > 0, depending only on the
sectional curvature upper bound, such that for any point x ∈ M , the exponential
map expx is immersion on the ball B(R) of radius R in the tangent space. Then,
the pullback metric on B(R) under expx has a nice property that its Laplacian is
uniformly elliptic on the ball B(R). If, in addition, the curvature tensor of ω and
all its derivatives are bounded on M , we can apply the Schauder estimates to the
Laplacian of exp∗x ω on B(R).

Thus, instead of the usual coordinate charts, we shall work on the quasi-coordinate
charts {(B(R), expx)}, which is sufficient for solving partial differential equations on
manifolds. However, for our further applications on invariant metrics, it is desired
to have holomorphic coordinate charts {(B(R1), ψx)} for which the radius R1 is uni-
formly bounded away from zero.

Notice that the exponential map is in general not holomorphic, if the tangent space
is endowed with the standard complex structure of Cn. Nevertheless, we can pullback
the complex structure from the manifold to the tangent space via the exponential
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map. Then, the exponential map is holomorphic, but the geodesic normal coordinates
need not be holomorphic. To produce holomorphic coordinates, one needs to solve a
∂̄-equation.

The starting point is the following inequality, established by the second author
with Y. T. Siu [SY77],

|∂̄(xj +
√
−1xn+j)| ≤ Cr2 on B(R),

where x = (x1, . . . , x2n) is a geodesic normal coordinate system and r = |x| is the
Euclidean distance. The Siu-Yau inequality allows one to use the singular weight
in the L2 estimate of ∂̄. Then, we obtain a system of holomorphic functions which
form an independent set at the origin, thanks to the singular weight. By the implicit
function theorem, these holomorphic functions form a coordinate system in a small
ball B(δ) of the origin (cf. [SY77, pp. 247–248], [GW79, pp. 160–161], and [TY90,
p. 582]).

A subtlety is that the radius δ may a priori depend on the point x. To see this,
note that the complex structure on B(R) is not the standard one inherited from Cn
but the one pullback from the complex manifold via expx. Thus, for different x, the
corresponding B(R) is different as a complex manifold (compare [BSW78, p. 238]).
Hence, the ∂̄-operators are different; so are the radii. The earlier works do not need
to address the subtlety, but we have to, as it is crucial for our proof of the Greene-Wu
conjectures.

To settle the subtlety, we derive in Lemma 12 [WY17] an interior gradient es-
timate for the solution of ∂̄-equation. To get the estimate, we first transform the
∂̄-equation into the Laplace equation for functions, in contrast to those standard
Laplace equations for (0, 1)-forms such as [FK72]. So, instead of the integral esti-
mate of Morrey-Kohn-Hörmander, we apply the elementary maximum principle and
Moser’s iteration. Our approach has the advantage that the constants in the esti-
mates clearly depend only on the curvature bounds. Thus, by the gradient estimate,
we show that the radius can be chosen to depend only on the curvature bound. This
justifies the effectiveness of quasi-bounded geometry.

Remark 3.5. In February 2019, Christina Sormani raised a question to us that
whether there is a harmonic quasi-coordinate system on a complete Riemannian man-
ifold of bounded curvature; that is, the quasi-coordinates are harmonic functions, the
pullback metric under the quasi-coordinate map is uniformly equivalent to Euclidean
metric, and the radii of quasi-coordinate balls and the constant in the metric equiv-
alence depend only on the curvature bounds. The answer is affirmative. To see
this, we again begin with the second author’s Riemannian quasi-coordinate system
(B(R), expx), where the radius R > 0 depends only on the curvature upper bound.
Then, pullback the Riemannian metric to B(R) via the exponential map. Then B(R)
with the pullback metric is itself a Riemannian manifold with the injectivity radius
(of the origin) equal to R > 0. From here one can construct as usual the harmonic
coordinates on a smaller ball B(r); see for example, Theorem 2.8.1 in [Jos84, p. 59],
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where the radius r > 0 depends only on R and the curvature bounds. Hence, r
depends only on the curvature bounds. �

Once the quasi-coordinate charts {(B(R1), ψx)} are obtained, one can define the
Hölder spaces on M , as in Cheng-Yau [CY80], by pulling back the functions via ψx
to B(r) and taking supremum of all Hölder norms over B(r). We can now adapt the
Schauder theory to these Hölder spaces. This together with my generalized maximum
principle enable us to prove the nonemptyness, openness, and the bootstrap argument.

Notice that in the process of constructing the quasi-coordinate chats, we assume
that the background metric ω has bounds for all the covariant derivatives of its curva-
ture tensor. To remove the derivative bounds, we invoke a useful derivative estimate,
due to Wan-Xiong Shi [Shi89, Shi97]. Shi [Shi97] proves that if a complete Kähler
manifold (M,ω) has bounded sectional curvature, then M admits another complete
Kähler metric ω1 which is uniformly equivalent to ω, and the curvature tensor of ω1

has bounded covariant derivatives of arbitrary order. Shi’s argument uses the Ricci
flow and derive its short time existence. His argument can be extended to show that
if the original metric ω has negatively pinched holomorphic sectional curvature, so is
the new metric ω1. An important step is to extend his maximum principle to tensors.

By replacing ω with ω1, we can assume the curvature tensor of ω has bounded co-
variant derivatives of arbitrary order, in addition to H(ω) negatively pinched. Then,
ω has quasi-bounded geometry. This settles the nonemptyness and openness of equa-
tion ωnt = euωn. By the refined Schwarz lemma we have trωtω ≤ C. This together
with the upper bound of u implies the closedness, where the bootstrap argument
also uses the quasi-bounded geometry. This solves the Monge-Ampère type equation.
Thus, we obtain a Kähler-Einstein metric ωKE which is uniformly equivalent to ω.
In particular, ωKE is complete. The uniform estimates on u implies the curvature
tensor of ωKE has bounded covariant derivatives of any order. The uniqueness of ωKE

is already known (cf. [CY80, Proposition 5.5]), due to the second author’s Schwarz
Lemma [Yau78a]. This completes the proof of Theorem 3.1.

By using the (quasi-)bounded geometry with pointwise interior estimates, we can
further prove the quasi-isometries of the Bergman metrics (Theorem 3.2) and Kobayashi-
Royden metrics (Theorem 3.3). In fact, to show these two quasi-isometries we only
need the effective (quasi-)bounded geometry of order zero. Thus, Shi’s derivative es-
timates are not indispensable for these two theorems. We refer the readers to [WY17]
for details.

Theorem 3.1 can be further generalized in several directions. One of them is con-
nected to the study of the fourth classical invariant metric, the Carathéodory-Reiffen
metric.

Theorem 3.6 ([WY18]). Let (M,ω) be a complete Kähler manifold with bounded

sectional curvature. Suppose that M has a holomorphic covering space M̃ such that
for each point x ∈ M̃ , there exists a holomorphic map F from M̃ to a Kähler manifold
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(N,ωN ) such that H(ωN ) ≤ −1 and

F ∗ωN ≥ Cω̃ at x

where ω̃ is the induced covering metric, and C > 0 is a constant independent of x.
Then, M admits a complete Kähler-Einstein metric ωKE which is uniformly equivalent
to ω and the curvature tensor of ωKE and all its covariant derivatives are bounded on
M .

Theorem 3.6 contains the previous theorem (Theorem 3.1), in that if the complete
metric ω on M has negatively pinched holomorphic sectional curvature, then in par-
ticular its sectional curvature is bounded. We can simple take M̃ = N = M and
F = identity. We point out that the proof of Theorem 3.6 bypasses the maximum
prinicple derived in [WY17, Appendix A], though the latter has interests of its own.

On the other hand, Theorem 3.6 can be viewed as an extension of the following
result of H. Wu [Wu93, Theorem 2] (see also [Kik11, Corollary 1.2]) to the setting of
complete Kähler manifold.

Theorem 3.7 ([Wu93, Kik11]). Let M be a compact complex manifold. If M is
Carathéodory hyperbolic, then KM is ample.

We include following result, which is technically different from Theorem 3.6, in
order to include examples of the quasi-projective manifolds (compare for example
[Yau78b, CY86, TY87, Wu08]).

Theorem 3.8. Let (M,ω) be a complete Kähler manifold with bounded sectional

curvature, and let π : M̃ → M has a holomorphic covering space. Assume Ẽ ⊂ M̃
which is either compact or M̃ \ Ẽ is a bounded domain with respect to ω̃ = π∗ω, such
that

(i) ddc log ω̃n ≥ C1ω̃ on M̃ \ Ẽ, where C1 is a constant.

(ii) For each x ∈ Ẽ, there exists a holomorphic map F from M̃ to a Kähler manifold
(N,ωN ) with H(ωN ) ≤ −1 such that F ∗ωN ≥ C2 ω̃ where C2 is a constant
independent of x.

Then, M admits a complete Kähler-Einstein metric ωKE which is uniformly equivalent
to ω, and the curvature tensor of ωKE has bounded covariant derivatives of arbitrary
order.

A motivational example for Theorem 3.6 and Theorem 3.8 is the moduli space
of Riemann surfaces, whose covering space is the Teichülcer space (see [LSY04] for
example). The Bers embedding theorem gives the map F from the covering space to
a large ball in Cn so that the pullback metric under F is nondegenerate. Another
example for Theorem 3.8 is the quasi-projective surface M = M \ D with positive
logarithmic canonical bundle KM +D, where D is a Riemann surface of genus greater
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than one. Theorem 3.8 generates a new example of complete Kähler-Einstein manifold
with infinite volume, modeled on D× D∗; see [WY18, Example 5.5].

We note that Theorem 3.1 is recovered by Tong [Ton18] using the approach of
Kähler-Ricci flow. Theorem 3.1 is generated by Huang-Lee-Tam-Tong [HLTT18] to
the case with possibly unbounded curvature; namely, they replace condition H(ω) ≥
−κ2 in Theorem 3.1 by the condition that there exists an smooth exhaustion function
ρ with bounded gradient and bounded complex Hessian. It is then natural to ask
if there is a geometric example of complete Kähler manifold (M,ω) with such an
exhaustion function ρ, H(ω) ≤ −κ1 < 0, and unbounded curvature.

4. Some open problems

We have mentioned several open problems, for instance, the conjectures of Lang,
Kobayashi, and the second author in Section 2, and the two conjectures in Section 3 on
the simply-connected complete Kähler manifold whose sectional curvature is bounded
above by a negative constant. These conjectures are well-known. Concerning the
second author’s conjecture on compact hermitian manifolds, some progress has been
made by [YZ19].

Very recently, F. Zheng [Zhe17] (see also [HLWZ18]) points out an interesting
generalization of the second author’s conjecture, based on the example of a smooth
ample hypersurface in the abelian variety. The generalized conjecture states that if
a compact Kähler manifold has nonpositive holomorphic sectional curvature and the
curvature tensor has no truly flat direction at a point, then the canonical bundle is
ample. (The curvature tensor is said to have a truly flat direction v ∈ T ′xM at a point
x if R(v, η, ξ, ζ) = 0 for all η, ξ, ζ ∈ T ′xM .)

It would be interesting to compare the three invariant metrics listed in Corol-
lary 3.4 with the fourth classical invariant metric, the Carathéodory-Reffein metric,
on a simply-connected complete Kähler manifold with negatively pinched curvature.
The general existence of the last metric remains an open problem. For the bounded
convex domain in Cn, Lempert [Lem81] has shown that the Carathéodory-Reffein
metric coincides with the Kobayashi-Royden metric. Very recently, by using the sec-
ond author’s Schwarz Lemma, G. Cho [Cho18a] compares the Carathéodory-Reffiein
metric with the Kähler-Einstein metric on certain pseudoconvex domains.

Besides the above problems, we list below some questions from the viewpoints and
methods developed in the previous sections.

Question 4.1. Let (M,ω) be a compact Kähler manifold with quasi-negative holo-
morphic sectional curvature. Assume M contains no elliptic curve. Does M admit
another Kähler metric ω1 whose holomorphic sectional curvature is negative every-
where?
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This question is motivated from the purely partial differential equation approach
in the proof of Theorem 2.3 (i). One might be able to deform ω to ω1 along certain
family of metrics which gradually decreases the holomorphic sectional curvature. The
freeness of elliptic curve is imposed, in view of the Schwarz lemma. An answer to
this question would allow one to gain a better understanding of the geometry of
holomorphic curvature.

Conjecture 4.2. Let M be a compact Kähler manifold such that over the projectivized
tangent bundle P(T ′M) of M , the first Chern class of the tautological line bundle is
negative in the tautological direction. Then, the canonical bundle KM is positive.

Conjecture 4.2 may be viewed as an algebraic geometric generalization or a Finsler
generalization of [WY16a]. To see this, if M has a Kähler metric ω whose holomorphic
sectional curvature is negative, then ω naturally induces a metric on the tautological
line bundle such that its curvature form is negative along the tautological direction.
On the other hand, the negativity of the first Chern class in Conjecture 4.2 has an
algebraic geometric interpretation, which does not require the notion of curvature.

Conjecture 4.3. Let (M,ω) be a simply-connected complete Kähler manifold with
sectional curvature bounded between two negative constants. Then M is biholomorphic
to a bounded pseudoconvex domain in Cn.

Conjecture 4.3 may be viewed as an intermediate step toward the conjecture in
Section 3, which asserts that a simply-connected complete Kähler manifold with sec-
tional curvature bounded above by a negative constant must be biholomorphic to a
bounded domain in Cn. For, if the latter conjecture is true, then the bounded domain
in Cn possesses a complete Kähler-Einstein metric, by virtue of Theorem 3.1. It then
follows from [MY83] that the bounded domain is psuedoconvex. We note that the
pseudoconvex cannot be strengthened to the strict pseudoconvexity, in view of the
egg domain [Bla86] (see also [Cho18b]).

At this end, let us discuss another open problem which has been posted by the
second author a while ago. This is a question about resolution of singularities of
Kähler metrics. Let us look at the following class of metrics: Take a complex variety
M and a subvariety S of M , we consider Kähler metrics g defined in M − S that
satisfies the following condition: At each point x ∈ S, there is a neighborhood U of
x so that a nonsingular manifold O and a subvariety D of O and a holomorphic map
F : O → U which maps D into S so that each component of the inverse of S ∩ U is
a compact subvariety of D. (In fact, a component of the inverse image of a compact
neighborhood is compact.)

The map is locally invertible on every point in O − D, and the pullback of the
metric g (defined on M − S) under F can be extended to be a smooth nonsingular
metric on O. We also allow the pullback metric to be a Kähler metric defined on
O−D, complete towards D and its curvature and covariant derivatives are bounded.
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The Kähler metric g is said to admit resolution of singularities if a system of maps
{F} exists at every point x ∈ S. A good example is the orbifold metric where O can
be taken to be the ball and the map F is the map from the ball to its quotient space
which maps the origin to the quotient singularity. Note that the singular behavior of
the metric depends on the system {F} which is defined in holomorphic category.

The second author conjectures that if the curvature and the covariant derivatives
of the curvature of this Kähler metric are bounded in each neighborhood of x of S, the
resolution system {F} exists. Such a statement may be called resolution of singular-
ities of Kähler metric. Note that if we fix a holomorphic system {F}, there is only
one complete Kähler-Einstein metric with negative Ricci curvature resolved by {F}.

On the other hand, there can be distinct Kähler-Einstein metrics if we choose
different system to resolve the singularities of the metric. One can define two systems
of resolutions to be equivalent if the holomorphic map from O−D to O′−D′ can be
extended to be a nonsingular map from O to O′ and the same is true for the inverse
map from O′ −D′ to O −D.

This concept appeared in the work of the second author with Cheng [CY86] on
the construction of Kähler-Einstein metrics on singular varieties. The existence of
Kähler-Einstein metrics can be readily generalized to this class of singular metrics.
(Basically the same argument in [CY86].)

Is it true that algebraic manifolds of general type admits such Kähler metrics with
negative Ricci curvature? It is certainly true for algebraic surface of general type.
Since the arguments of Ricci flow largely depend only on maximal principle, Kähler-
Ricci flow works well with class of singular metrics. Note that such Kähler metric
includes a class of Kähler metrics which can be degenerate along S.
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